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About Cryptography Research, Inc.
 CRI is the leading semiconductor security R&D and 

licensing company
 >6 billion products are made annually with tamper 

resistance technologies licensed from CRI

 Defense focus: fraud, counterfeiting & digital piracy
 Anticipate long-term trends, deploy practical and 

effective solutions

Systems designed by CRI engineers secure 
hundreds of billions of dollars in commerce annually

San Francisco HQ
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Tamper-resistance
 Devices using secret or private key cryptography need 

to protect their secret keys

K

f()inputs outputs

Device computes with key K, 
but bad guys must never 
extract K

• Payments
• Identity
• Anti-counterfeiting
• Anti-piracy
• Communications
• (and more)

 Building block for many 
applications
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Introducing Side Channel Analysis
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Crypto ops consume power

NMOS (N-Channel) Transistor

Integrated circuits contain transistors, which consume electricity 
as they operate. 

Power Consumption (RSA operation)

EM emission (RSA operation)
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T significance 
thresholds

Side channel attacks
 Attacks that monitor variations in the power consumption or 

electromagnetic (EM) emissions of a device

 Results in full extraction of cryptographic keys from crypto HW + SW
 Devices without countermeasures are vulnerable

 Attacks are low cost, non-invasive, passive, and leave no trace
 Devices operate normally
 Attack can be made at a distance with simple oscilloscope and PC (<$1,000)
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Simple Power Analysis, Differential Power Analysis

 Discovered by Cryptography Research in mid-1990s (“DPA” and “SPA”)

 All cryptographic algorithms vulnerable
 Symmetric crypto: DES, AES, HMAC,…
 Asymmetric crypto: RSA, DH, EC variants,…

 Affects all types of hardware and software implementations, including:
 ASICs, FPGAs, smart cards, smart phones,…

 Same techniques work for different signal sources, including timing, E&M and RF

Advances in Cryptology – Crypto 99 Proceedings, LNCS 1666, 
Springer-Verlag, 1999

Early DPA Testing Apparatus (NYT 6/22/98)
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Simple Power (EM) Analysis
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Simple Power Analysis (SPA)
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LOOP SQUARE

CONDITIONAL MULT

EXPONENT!
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SPA as a reverse engineering tool
 Single-trace analysis

 Identify loops/repeated operations
 Shift and compare

 Trace pair analysis
 Identify differences between traces if key or message 

is changed

 Chosen message analysis
 Trace pair analysis with deliberately chosen messages
 Target: leaks for boundary conditions

Trace 1 & Trace 2 (SKDM)

Trace 2: C = 2Trace 1: input ciphertext C is random

Trace 1

… Shifted

Difference: Trace 1 minus Trace 1 “Shifted”
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What can you do with an extracted key?

 Clone an identity device
 Forge a payment
 Pirate digital content
 Manufacture a counterfeit device
 Eavesdrop on communications
 … and more

K

f()inputs outputs

Device computes with key K, 
but bad guys must never 
extract K
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Differential Power (EM) Analysis
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AES decrypt (K1, C1)

AES decrypt (K2, C2)

TraceK1C1 – TraceK2C2

Motivation for DPA: Statistical leaks!

 With different key, different input, the general shape of AES decryption traces 
look similar: no obvious dependence on key or data
 Differences outside of AES region come from noise
 Variation within the AES operation looks a little higher, but is that significant?

 Are key and data-dependent power variations still present?
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Data-dependent power consumption

Examine distribution of power measurements at 
T = 87488 

 Can we isolate data dependent leakage?
 Consider a set of AES decryption traces with varying key and 

ciphertext

P
ro

b.
  d

en
si

ty
Power signal amplitude at time T=87488

Signal Amplitude (39 µA/step)

T = 87488

Does the distribution vary based on the data 
being processed? 
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Data-dependent power consumption
 What is the influence of one intermediate bit on power 

consumption?
 Example: Partition traces into two subsets, based on whether bit 7 

in a particular register is either 0 or 1 during first round
 Compute distribution of measurements separately for each subset

P
ro
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  d

en
si

ty

Power signal amplitude at time T=87488

Signal Amplitude (39 µA/step)

Register bit 7 =1
Register bit 7 =0

 Distribution of measurements when this bit is 0 is markedly different 
from distribution when bit is 1

 Probability this difference happened by chance is low: 10ିଷ଴଴
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Differential Power Analysis (DPA)
 DPA tests the question: “Do variations in processing state cause 

detectable variations within a set of side channel measurements?”
 DPA test process:

 Perform multiple operations on a device with differing data
 Measure power consumption and record (known) data processed during 

each operation
 Partition set of power measurements into subsets, according to a 

property—such as a data bit value—of the state being processed
 Check for statistical differences between the subsets

 Typically difference of means
 Vector approach: repeat the difference calculation at each offset along the traces; 

and view the results as a “difference trace”

 Result:
 Differences of means shows spikes when a data leak has been isolated!
 Spikes occur at time offsets where the device’s state leaks
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...

input bit 0

input bit 1

input bit 2

input bit 3

input bit 4

input bit 5

input bit 6

input bit 7

input bit 8

input bit 9

input bit 17

input bit 127

...

...

Average trace

Key Schedule? XorBytes … SubBytesInput data load…

Differential traces (40x)

Example: DPA input 
correlation analysis
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Example: DPA targeting AES Keys

 Sort and average signals based on 
intermediate values derived from known 
input and key byte
 Guess 8-bit key K, predict bit of intermediate I 

for known input X

 For each key guess (256 total), partition and 
average traces based on prediction of bit of I

 Exactly 1 out of 256 key guesses will be 
correct

 For correct key guess, predicted I is 
correct and difference of averages will 
show peaks!

S

X

K

I

8

8

8
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Differential Power Analysis (DPA) result

 To read more about DPA
 www.cryptography.com/dpa
 www.dpabook.org

Correct guess g for Kj

Incorrect guess g for Kj

Mean of all traces
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Side channel vulnerabilities 
in mobile devices
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Overview

 Increased usage of cryptography in smart-phones
 Payments, encrypted storage, VPNs, SSL, content protection, etc
 Security requirements in financial, enterprise, govt, content

 CPUs in smart-phones emit electromagnetic (EM) 
radiation during data processing
 All tests performed with mobile device in airplane mode
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Capturing EM from PDA’s/Smartphones
 Simple EM attack with a radio
 Usable signals even at 10 feet away 

Devices Antennas

far field

near field

Receiver
($350)

Digitizer,
GNU Radio
peripheral
($1000)

Signal Processing
(demodulation, filtering)

DPAWSTM side-channel
analysis software
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M-field attack on RSA

 App with simple RSA CRT 
implementation on mobile phone

 Magnetic field pickup coil placed 
behind phone

 Measurements collected during 
computation of

Md mod N

RSA CRT 

Mp dp mod p Mq dq mod q

• CF = 36.99 MHz
• Acq BW = 500 KHz
• Filt BW = 250 KHz
• Smoothing = 10
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RSA: Key extraction
 Focus on Mpdp mod p calculation (Mqdq mod q similar) 

For each bit i of secret dp
perform “Square”
if (bit i == 1) 

perform “Multiply”
endif

endfor

SM S  S S S S S S SM S SM SM S S S SM SM S  S S S S
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Simple EM attack on ECC from 10 feet away

 Elliptic Curve crypto app
 Point multiplication (m * Q) over P-571 using open source 

crypto library

 Double-and-add algorithm to compute m*Q
 In ECC, double and add are very different operations
 The double/add execution sequence yields m (!) 
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ECC Signal: Extracting Secret M
• CF = 972.177 MHz
• Acq BW = 200 KHz
• Filt BW = 140 KHz
• Smoothing = 10

D D D D D D D D D A   D    A  D    A     D    A     D    A   D    A

m = 1  0   0   0  0    0   0  0  0     1            1            1            1            1          1     
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DPA attack on AES
 Bulk AES encryption on another phone

 App invokes the Bouncy Castle AES provider
 Baseband m-field trace capture on a sampling scope

Bulk AES AES 1    AES 2    AES 3

• Baseband
• Acq LPF = 100 MHz
• Filt BW = 60 MHz



C r y p t o g r a p h y   R e s e a r c h :    L e a d e r   I n   A d v a n c e d   C r y p t o s y s t e m s ™ 28

Efficient leakage testing

 We can test for leakage without actually doing full DPA 
key recovery

 Standardized tests perform statistical analysis to 
identify presence of leakage

28

Attack
lists

Directed
tests

Assessable
conformance criteria

Effective validation tests 
fall in this range
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Information leakage assessment on AES

 Results of standardized leakage test on leaky device

Control Group: t-test comparing 
average signal from Set 1  (random AES)
with average signal from Set 2 (random AES )

Test Group:  t-test comparing 
average signal from Set 1 (random AES )
with average signal from Set 3 (fixed AES)

t-statistic t-statistic

+ 4.5

- 4.5

+ 4.5

- 4.5

> 40

29



C r y p t o g r a p h y   R e s e a r c h :    L e a d e r   I n   A d v a n c e d   C r y p t o s y s t e m s ™ 30

Defenses
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 Categories 

 Certifications / Requirements
 FIPS 140-3 draft
 Common Criteria
 CAC, E-Passport, HSPD-12

Defenses against power analysis

Cryptography Research

– Obfuscation
– Leak Reduction
– Balanced HW / SW

– Amplitude & Temporal Noise
– Incorporating Randomness
– Protocol Level CM

!
A license is 
required to make, 
use, or sell DPA-
resistant devices
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Example HW countermeasure: Noise

Before After

 Amplitude noise: Voltage spikes, fluctuations due to random data

 Temporal noise: Random delays, dummy operations, randomized clock

Before

After inserting 
dummy ops
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Example of a SW-friendly countermeasure: Masking

 Implement block cipher with 
random information to
 Split key into two (or more) 

randomized parts
 Split message into two (or more) 

randomized parts
 E.g., Key = Key Part A ⊕ Key 

Part B

 Compute block cipher using the  
unpredictable parts
 Correct answer is obtained, but 

no internal variable is correlated 
to the input and key

Key Part A

Message

Block cipher
computed using

split data
representations

Key Part B

Part A Part B

Result Part A Result Part B

Result
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Example: Protocol level countermeasures

 Build protocols that survive information leakage

 Design crypto with realistic assumptions about the hardware

 Hardware has to be fairly good, but assumed to leak

 Can obtain provable security against DPA with reasonable 
assumptions and significant safety margin

 Can perform symmetric key transactions, challenge response, 
authenticated encryption/decryption

KROOT

f0() f1()

KROOT,0 KROOT,1

f0() f1() f0() f1()

KROOT,00 KROOT,01 KROOT,10 KROOT,11

Key

(TR Hardware)

Hash Key

Increment
transaction counter

Use key to secure
transaction
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Conclusions
 Without countermeasures, all mobile device CPUs leak information 

about cryptographic keys
 Key extraction at 10 feet with $1000 of equipment

 This is a solvable problem in today’s constrained devices
 Defenses can be implemented in hardware, software, and protocol layers

 New metrics in conformance-style tests allow consistent security 
assessment
 Provide direct leakage feedback to developers
 “Red team” techniques may not be required for product assessment
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Questions?

Benjamin Jun
VP and CTO
Cryptography Research Inc.

ben@cryptography.com
+1 415-390-4323

(Email me for a copy of the slides)


