CRYPTOGRAPHY ${ }^{\text {m }}$ RESEARCH a division of Rambus

Extracting Keys from Mobile Devices With Differential Power Analysis

www.cryptography.com
425 Market St., 11 ${ }^{\text {th }}$ Floor, San Francisco, CA 94105

About Cryptography Research, Inc.

- CRI is the leading semiconductor security R\&D and licensing company
- >6 billion products are made annually with tamper resistance technologies licensed from CRI
- Defense focus: fraud, counterfeiting \& digital piracy
- Anticipate long-term trends, deploy practical and effective solutions

Systems designed by CRI engineers secure hundreds of billions of dollars in commerce annually

Tamper-resistance

- Devices using secret or private key cryptography need to protect their secret keys

- Building block for many applications
- Payments
- Identity
- Anti-counterfeiting
- Anti-piracy
- Communications
- (and more)

Introducing Side Channel Analysis

Crypto ops consume power

Integrated circuits contain transistors, which consume electricity as they operate.

NMOS (N-Channel) Transistor

Power Consumption (RSA operation)

EM emission (RSA operation)

Side channel attacks

- Attacks that monitor variations in the power consumption or electromagnetic (EM) emissions of a device
- Results in full extraction of cryptographic keys from crypto HW + SW
- Devices without countermeasures are vulnerable
- Attacks are low cost, non-invasive, passive, and leave no trace
- Devices operate normally
- Attack can be made at a distance with simple oscilloscope and PC ($<\$ 1,000$)

Simple Power Analysis, Differential Power Analysis

- Discovered by Cryptography Research in mid-1990s ("DPA" and "SPA")
- All cryptographic algorithms vulnerable
- Symmetric crypto: DES, AES, HMAC,...
- Asymmetric crypto: RSA, DH, EC variants,...
- Affects all types of hardware and software implementations, including:
- ASICs, FPGAs, smart cards, smart phones,...
- Same techniques work for different signal sources, including timing, E\&M and RF

Springer-Verlag, 1999
a division of Rambus

Simple Power (EM) Analysis

Simple Power Analysis (SPA)

EXPONENT!

Algorithm MODULAR_EXPONENTIATION (exponent e, base b, modulus n)

```
    Let A = 1
    Let X = b mod n
```

1 Let k be the number of bits in e. Then,

$$
A=(A * A) \bmod n
$$

; bit 0 is LSB if ($e_{i}==1$), do

Done
Done
Return A
End Algorithm

SPA as a reverse engineering tool

- Single-trace analysis
- Identify loops/repeated operations
- Shift and compare

- Trace pair analysis
- Identify differences between traces if key or message is changed
- Chosen message analysis
- Trace pair analysis with deliberately chosen messages

- Target: leaks for boundary conditions

a division of Rambus

What can you do with an extracted key?

- Clone an identity device
- Forge a payment
- Pirate digital content
- Manufacture a counterfeit device
- Eavesdrop on communications
- ... and more

Differential Power (EM) Analysis

Motivation for DPA: Statistical leaks!

- With different key, different input, the general shape of AES decryption traces look similar: no obvious dependence on key or data
- Differences outside of AES region come from noise
- Variation within the AES operation looks a little higher, but is that significant?
- Are key and data-dependent power variations still present?

Data-dependent power consumption

- Can we isolate data dependent leakage?
- Consider a set of AES decryption traces with varying key and ciphertext

Examine distribution of power measurements at $\mathrm{T}=87488$

Does the distribution vary based on the data being processed?

Data-dependent power consumption

- What is the influence of one intermediate bit on power consumption?
- Example: Partition traces into two subsets, based on whether bit 7 in a particular register is either 0 or 1 during first round
- Compute distribution of measurements separately for each subset

- Distribution of measurements when this bit is 0 is markedly different from distribution when bit is 1
- Probability this difference happened by chance is low: 10^{-300}

Differential Power Analysis (DPA)

- DPA tests the question: "Do variations in processing state cause detectable variations within a set of side channel measurements?"
- DPA test process:
- Perform multiple operations on a device with differing data
- Measure power consumption and record (known) data processed during each operation
- Partition set of power measurements into subsets, according to a property—such as a data bit value-of the state being processed
- Check for statistical differences between the subsets
- Typically difference of means
- Vector approach: repeat the difference calculation at each offset along the traces; and view the results as a "difference trace"
- Result:
- Differences of means shows spikes when a data leak has been isolated!
- Spikes occur at time offsets where the device's state leaks

Example: DPA input correlation analysis

a division of Rambus

Example: DPA targeting AES Keys

- Sort and average signals based on intermediate values derived from known input and key byte
- Guess 8-bit key K, predict bit of intermediate I for known input X
- For each key guess (256 total), partition and average traces based on prediction of bit of I
- Exactly 1 out of 256 key guesses will be correct
- For correct key guess, predicted I is correct and difference of averages will
 show peaks!

Differential Power Analysis (DPA) result

- To read more about DPA
- www.cryptography.com/dpa
- www.dpabook.org

Side channel vulnerabilities in mobile devices

Overview

- Increased usage of cryptography in smart-phones
- Payments, encrypted storage, VPNs, SSL, content protection, etc
- Security requirements in financial, enterprise, govt, content
- CPUs in smart-phones emit electromagnetic (EM) radiation during data processing
- All tests performed with mobile device in airplane mode

Capturing EM from PDA's/Smartphones

- Simple EM attack with a radio
- Usable signals even at 10 feet away

M-field attack on RSA

- App with simple RSA CRT implementation on mobile phone
- Magnetic field pickup coil placed behind phone
- Measurements collected during computation of

RSA: Key extraction

- Focus on $\mathrm{Mp}^{\mathrm{dp}}$ mod p calculation ($\mathrm{Mq}^{\mathrm{dq}} \bmod \mathrm{q}$ similar)

For each bit i of secret dp
perform "Square"
if (bit $\mathrm{i}==1$)
perform "Multiply"
endif
endfor

Simple EM attack on ECC from 10 feet away

- Elliptic Curve crypto app
- Point multiplication (m * Q) over P-571 using open source crypto library
- Double-and-add algorithm to compute m*Q
- In ECC, double and add are very different operations
- The double/add execution sequence yields m (!)

ECC Signal: Extracting Secret M

a division of Rambus

DPA attack on AES

- Bulk AES encryption on another phone
- App invokes the Bouncy Castle AES provider
- Baseband m-field trace capture on a sampling scope

- Baseband
- Acq LPF $=100 \mathrm{MHz}$
- Filt BW $=60 \mathrm{MHz}$

Efficient leakage testing

- We can test for leakage without actually doing full DPA key recovery
- Standardized tests perform statistical analysis to identify presence of leakage

Information leakage assessment on AES

- Results of standardized leakage test on leaky device

Control Group: t-test comparing average signal from Set 1 (random AES) with average signal from Set 2 (random AES)

Test Group: t-test comparing average signal from Set 1 (random AES) with average signal from Set 3 (fixed AES)

Defenses

Defenses against power analysis

- Categories
- Obfuscation
- Leak Reduction
- Balanced HW / SW
- Amplitude \& Temporal Noise
- Incorporating Randomness
- Protocol Level CM
- Certifications / Requirements
- FIPS 140-3 draft
- Common Criteria
- CAC, E-Passport, HSPD-12

[^0]

Cryptography Research
a division of Rambus

Example HW countermeasure: Noise

- Amplitude noise: Voltage spikes, fluctuations due to random data
Before
- Temporal noise: Random delays, dummy operations, randomized clock

Example of a SW-friendly countermeasure: Masking

- Implement block cipher with random information to
- Split key into two (or more) randomized parts
- Split message into two (or more) randomized parts
- E.g., Key = Key Part A \oplus Key Part B
- Compute block cipher using the unpredictable parts
- Correct answer is obtained, but no internal variable is correlated to the input and key

Example: Protocol level countermeasures

- Build protocols that survive information leakage
- Design crypto with realistic assumptions about the hardware
- Hardware has to be fairly good, but assumed to leak
- Can obtain provable security against DPA with reasonable assumptions and significant safety margin
- Can perform symmetric key transactions, challenge response, authenticated encryption/decryption

Conclusions

- Without countermeasures, all mobile device CPUs leak information about cryptographic keys
- Key extraction at 10 feet with $\$ 1000$ of equipment
- This is a solvable problem in today's constrained devices
- Defenses can be implemented in hardware, software, and protocol layers
- New metrics in conformance-style tests allow consistent security assessment
- Provide direct leakage feedback to developers
- "Red team" techniques may not be required for product assessment

Questions?

Benjamin Jun
 VP and CTO
 Cryptography Research Inc.

ben@cryptography.com
+1 415-390-4323
(Email me for a copy of the slides)

[^0]: A license is
 required to make, use, or sell DPAresistant devices

