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Abstract 

This document proposes a standard for running SSS scheme over the elliptic curve secp256k1. 
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Motivation 

SSS scheme is used worldwide to share the secret between several parties. SSS scheme can be adopted 

and used by bitcoin applications for delegating the control of the certain private key. The adopted SSS 

(let’s call it ESSS – elliptic SSS) gives extra level of security by delegating the private keys only to known 

public keys (using secp256k1 standard). The key features of this approach are: 

 

1) The 𝑝𝑟𝑖𝑣𝐾𝑒𝑦1 = 𝑠𝑝𝑙𝑖𝑡(𝑚, 𝑛), where m – amount of peers, n – required shares for restoration 

of  𝑝𝑟𝑖𝑣𝐾𝑒𝑦1. To restore the 𝑝𝑟𝑖𝑣𝐾𝑒𝑦1, n of peers should sign their share and provide back the 

signature. As a result, if the share has been signed by wrong private key - the secret can’t be 

restored. 

2)  This approach can be used as M-of-N multisig on application level 

3) Compact: only needed n shares to restore the secret, without any intermediate data. 

4) No extra rounds: the secret split happens in one round (if the peer already knows all public 

keys), the secret restoration happens in one round as well 

 

 

Description 

 

The original SSS scheme is based on polynomial interpolation, which is an algebraic method of 

estimating unknown values in a gap between two known data points — without needing to know 

anything about what is on either side of those points. 

 



SSS encodes the secret into a polynomial, then split it and distribute across peers. The key property of 

SSS, that in order to restore the secret, you have to provide the N of M shares (also known as threshold). 

N shares gives enough information to guess the point on the curve.  

 

Preparation round 

During the preparation round shares should be build from provided secret. First coefficients have to be 

generated (there are known as 𝑎𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 − 𝑖𝑠 𝑖𝑛𝑑𝑒𝑥). The amount of 𝑎𝑖  is equal to n (threshold) 

provided. Important note, that 𝑎0 = 𝑠𝑒𝑐𝑟𝑒𝑡. For instance, let’s assume our 𝑠𝑒𝑐𝑟𝑒𝑡 = 1234, m = 5, n = 3 

(3 shares required to restore the secret of 5 generated): 

1) The primes should be defined. All coefficients should be in the range: 0 < 𝑎𝑖  < prime (including 

𝑎0 – which is secret). Let’s assume, our prime = 2034 

2) Each 𝑎𝑖  = random(0;prime). Let’s assume, we’ve generated the following values: 𝑎1 = 345, 𝑎2 =

543 

3) Our function will have the form: 𝑓(𝑥) = 𝑎0 +  𝑎1 ∗ 𝑥 +  𝑎2 ∗ 𝑥2 𝑚𝑜𝑑 𝑝𝑟𝑖𝑚𝑒 or 𝑓(𝑥) = 1234 +

345 ∗ 𝑥 + 543 ∗ 𝑥2 mod 2034 

4) In original SSS, each share has 𝑥 = 𝑖𝑛𝑑𝑒𝑥, for instance for the first share 𝑥 = 1. In our case: 

𝑓(1) = 88, 𝑓(2) = 28, 𝑓(3) = 1054 and so on. These points are coordinates on defined curve. 

5) Each peer should get the share and its index 

 

Restoration 

The restoration requires n-of-m shares to be provided. The key point for us is where 𝑥 = 0, because 

𝑓(0) = 𝑎0, where 𝑎0 = 𝑠𝑒𝑐𝑟𝑒𝑡. To find out 𝑎0 the Lagrange basis polynomials can be used: 

∑ 𝑦𝑗 ∗ 𝑙𝑗(𝑥)

𝑛

𝑗=0

, 𝑤ℎ𝑒𝑟𝑒 𝑙𝑗(𝑥) = ∏
𝑥 −  𝑥𝑣

𝑥𝑗 − 𝑥𝑣0≤𝑣≤𝑛
𝑗≠𝑣

 

 

𝑓(0) = 88 ∗ (
0 −  2

1 −  2
∗  

0 − 3

1 − 3
) + 28 ∗ (

0 − 1

2 − 1
∗  

0 − 3

2 − 3
) +  1054 ∗ (

0 − 1

3 − 1
∗ 

0 − 2

3 − 2
) 

 𝑓(0) = 88 ∗ 3 + 28 ∗ (−3 ) + 1054 ∗ 1 = 264 − 84 + 1054 = 1234 

 

ECC extended version of SSS 

 

Preparation round 

Let’s assume that 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦0should be shared between 3 peers. Each of peers has its own keypair 

(private and public keys generated by secp256k1 standard): (𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦1; 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦1), 

(𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦2; 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦2), (𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦3; 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦3). In the following example, m = 3 and n = 2 (so 

only 2 any peers required to restore the 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦0). The rest of parameters and properties are: 



1) The prime number is static and is equal to the order of the group of the curve (n parameter of 

the curve): 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑏𝑎𝑎𝑒𝑑𝑐𝑒6𝑎𝑓48𝑎03𝑏𝑏𝑓𝑑25𝑒8𝑐𝑑0364141 

2) 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑖 = 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦𝑖 ∗ 𝐺, where G – is generator (point) and equal to: 

(79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, 

483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8) 

3) Coefficients (𝑎𝑖) and 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦0 should be less than prime (the same property as in original 

SSS) 

4) Each share represents the coordinate (x, y), where y – is a share and x – is the order of the 

share.  

 

The flow looks like so: 

1) The peer, who shares 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦0 receives 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦1, 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦2, 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦3  

2) For each 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑖 peer generates a special coefficient 𝑥𝐶𝑜𝑒𝑓𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚(0; 𝑝𝑟𝑖𝑚𝑒) 

3) Peer generates 𝑎𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚(0; 𝑝𝑟𝑖𝑚𝑒), just like in original flow 

4) The formula looks like in original flow: 𝑓(𝑥) = 𝑎0 +  𝑎1 ∗ 𝑥 +  𝑎2 ∗ 𝑥2 mod prime, but 𝑥𝑖 =

𝑥𝐶𝑜𝑒𝑓𝑖 ∗ 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑖 

5) The peer shares with 𝑥𝐶𝑜𝑒𝑓𝑖 and 𝑠ℎ𝑎𝑟𝑒𝑖. Each peer should receive his 𝑥𝐶𝑜𝑒𝑓𝑖 and 𝑠ℎ𝑎𝑟𝑒𝑖 only 

 

Restoration 

The restoration process looks similar, however, have some additional steps: 

1) Each owner of 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑖  should create a signature: 𝑠𝑖𝑔𝑖 = 𝑥𝐶𝑜𝑒𝑓𝑖 ∗  𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦𝑖 

2) The peers should exchange the signatures and shares (2 of 3 in the following example) 

3) To use original SSS restoration procedure, the calculation of 𝑥𝑖 has to be done for each provided 

share: 𝑥𝑖 = 𝑠𝑖𝑔𝑖 ∗ 𝐺. The proof: 𝑥𝑖 = 𝑠𝑖𝑔𝑖 ∗ 𝐺 =  𝑥𝐶𝑜𝑒𝑓1 ∗ 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦𝑖 ∗ 𝐺 =  𝑥𝐶𝑜𝑒𝑓𝑖 ∗

𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑖 

4) The last step is to perform calculation, with computed 𝑥𝑖 and provided 𝑠ℎ𝑎𝑟𝑒𝑖 

 

 

Properties 

Based on this solution, several additional properties are present: 

1) Only the owner of 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦𝑖  can sign 𝑥𝐶𝑜𝑒𝑓𝑖 

2) Each signature can be validated before private key restoration: 𝑠𝑖𝑔𝑖 ∗ 𝐺 =  𝑥𝐶𝑜𝑒𝑓𝑖 ∗ 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑖 

 

 

 


