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Abstract — ​Public blockchain networks have shown that Nakamoto Consensus is useful in the formation of 
long-term global agreement — and issues with short-term disagreement which can lead to re-organization 
(“or-org”) of the blockchain. In this paper we introduce a novel attack against p2p networks relying upon 
Nakamoto Blockchain Consensus, called a Blockchain Splitting attack (dubbed “ChainSplit”).   ChainSplit is 
the exploitation of byzentine fault injection to conduct double-spend attacks against merchants and 
exchanges or hold an entire blockchain network for ransom.  Adopting a block fitness test in the form of 
Floating-Point Nakamoto Consensus makes the entire class of Blockchain Splitting attacks much less 
feasible and reduces the average time needed to achieve a global network consensus over traditional 
Nakamoto Consensus. 

Introduction 
Satoshi Nakamoto’s Bitcoin protocol was created to provide a decentralized consensus on a 
fully distributed p2p network.  A problem arises when more than one proof of work is presented 
as the block in the blockchain as both proofs are seen as authoritative equals.  As a result a 
node will simply adopt the first solution seen, creating a kind of race condition. Byzentiene faults 
can form when visibility in a distributed and untrusted network is inconsistent. When two 
segments of the network disagree it creates a moment of weakness in which less than 51% of 
the network’s computational resources are required to keep the network balanced against itself.  

Nakamoto Consensus 
Nakamoto Consensus is the process of proving computational resources in order to determine 
eligibility to participate in the decision making process.  If the outcome of an election were 
based on one node (or one-IP-address-one-vote), then representation could be subverted by 
anyone able to allocate many IPs. A Nakamoto Consensus is only formed when the prevailing 
decision has the greatest proof-of-work effort invested in it.  In order for a Nakamoto Consensus 
to operate, the network must ensure that incentives are aligned such that the resources needed 
to subvert a proof-of-work based consensus outweigh the resources gained through its 
exploitation. 
 
A minimal network peer-to-peer structure is required to support Nakamoto Conesus. Messages 
are broadcast on a best-effort basis, and nodes can leave and rejoin the network at will, 
accepting the longest proof-of-work chain as proof of what happened while they were gone. 
This design makes no guarantees that the peers connected do not misrepresent the network, 
and without a central authority or central view - all peers depend on the data provided by 
neighboring peers. 

Security  
Nakamoto Consensus holds no guarantees that it is deterministic.  In the short term, we can 
observe that the Nakamoto Consensus is empirically non-deterministic which is evident by 
re-organizations (re-org) as a method of resolving disagreements within the network.   During a 
reorganization a blockchain network is at its weakest point, and a 51% attack to take the 



network becomes unnecessary. An adversary who can eclipse honest hosts on the network can 
use this as a means of fault injection to disrupt the normal flow of messages on the network 
which creates disagreement between nodes. When an exchange needs to confirm a 
transaction, common assumptions such as confirmation length or time sense confirmation may 
no longer be applicable during a ChainSplit attack - as this disagreement can remain in place for 
as long as the adversary continues the attack. 
 
With a truly open and decetlerized network any nodes and come and go as they please.  An 
adversary’s only restriction on the number of nodes that can be added to the p2p network is the 
number of IP addresses that can be purchased from Arin or AWS. Over time, dishonest nodes 
can be introduced to a network which simply delay the transmission of the discovery of new 
blocks - which in effect will force miners to continue to search for a competing proof-of-work for 
that block height.  When a competing proof-of-work is broadcasted to the network, the 
adversary will use it’s network influence to split knowledge of the proof-of-work as close to ½ as 
possible. If the network eclipse is perfect then no computational effort is needed, however 
nothing is stopping the attacker from adding additional computation resources to make sure the 
system is in balance.  Each time one solution is found on one side of the chain - the attacker 
needs to ensure that another block generated for the other chain - to keep both sides perfectly 
in balance.  As long as two sides of the network are perfectly in disagreement and generating 
new blocks - the attacker has intentionally created a hard-fork against the will of the network 
architects.  
 
The eclipse doesn’t need to be perfect - however there are ways to improve this deception.  By 
using dishonest nodes to eclipse the network an adversary is conducting a form of byzentine 
fault injection - which is the introduction of artificial fragmentation between untrusted nodes. 
When a miner starts to work on a new block - they will broadcast which side of the chain they 
have chosen - which will inform malicious nodes which side of the network a given miner is 
participating in. Although blockchain networks as a whole are resistant to DDoS, individual 
nodes are not, and therefore targeted Distributed-Denial of Service (DDoS) or Flooding can be 
used to knock off target honest nodes to isolate and re-form logical groups of nodes within the 
larger network. When a targeted node recovers from a DDoS attack all of its old connections 
should be broken, so it will search for nodes that are still accepting new connections. An 
adversary has another opportunity to establish a connection with an honest node when it looks 
to re-join the network.  Using dishonest nodes to flood and eclipse the network an attacker can 
monitor and reshape mining capacity to construct an eigenvector of computational effort - a 
balanced byzentine fault created for the purposes of exploitation. 
 
During a blockchain split, each side of the network will honor a separate merkel-tree formation 
and therefore a separate ledger of transactions.  At this point, an adversary will calculate the 
weaker side of the network.  An adversary will then broadcast currency deposits to public 
exchanges, but only on the weaker side, leaving the stronger side with no transaction from the 
adversary. Any exchange that confirms one of these deposits is relying upon nodes that have 
been entirely eclipsed so that they cannot see the competing chain - at this point anyone looking 



to confirm a transaction is vulnerable to a double spend. With this ephemeral-currency 
deposited, the attacker can wire out the account balance on a different blockchain - such as 
Tether.  When the weaker chain collapses, the transaction that the exchange acted upon is no 
longer codified in blockchain's global ledger, and was replaced with a version of the that did not 
contain these deposits. 
 
DeFi (Decentralized Finance) and smart contract obligations depend on network stability and 
determinism.  Failure to pay contracts, such as what happened on black thursday resulted in 
secured loans accidentally falling into redemption.  The transactions used by a smart contract 
are intended to be completed quickly and the outcome is irreversible.  However, if the 
blockchain network has split then a contract may fire and have it’s side-effects execute only to 
have the transaction on the ledger to be replaced.  Another example is that a hard-fork might 
cause the payer of a smart contract to default - as the transaction that they broadcasted ended 
up being on the weaker chain that lost. Some smart contracts, such as collateral backed loans 
have a redemption clause which would force the borrower on the loan to lose their deposit 
entirely.  
 
With two sides of the network balanced against each other - an attacker has split the blockchain 
and this split can last for as long as the attacker is able to exert the computational power to 
ensure that proof-of-work blocks are regularly found on both sides of the network.  Although in 
order to mount this attack it will require the adversary to possess significant computational 
resources, it is however far less than a 51% attack - thereby defeating the security guarantees 
needed for a decentralized untrusted payment network to function.  When a node finds a longer 
chain - this hash id is broadcast to neighboring nodes. The nodes conducting this broadcast 
merely have to be unique IP addresses - they are not required to present a proof-of-work. An 
adversary with a sufficiently large network of dishonest bots could use this to take a tally of 
which miners are participating in which side of the network split. This will create an 
attacker-controlled hard fork of the network with two mutually exclusive merkle trees. Whereby 
the duration of this split is arbitrary, and the decision in which chain to collapse is up to the 
individual with the most IP address, not the most computation. 
 
In Satoshi Nakamoto’s view was that the electorate should be represented by computational 
effort in the form of a proof-of-work, and only these nodes can participate in the consues 
process.  However, SplitChain shows that the electorate can be misled by non-voting nodes 
which can reshape the network to benefit an individual adversary. 

Chain Fitness 
Any solution to ChainSplit and byzentine fault injection needs to be fully decentralized. 
ChainSplit is possible because there is ambiguity in the Nakamoto proof-of-work, which creates 
the environment for a race conditions to form. To resolve this, Floating-Point Nakamoto 
Consensus introduces a method of disagreement resolution by setting up a kind of relay-race - 
where the winning team’s strength is carried forward.   This design is intended to cement the 



lead of the winner and to greatly incentivize the network to adopt the dominant chain no matter 
how many valid solutions are advertised, or what order they arrive. 
 
The first step in this new algorithm is that a node in the network should continue to conduct 
traditional Nakamoto Consensus, but If at any point there are two solution blocks advertised for 
the same height - then the more-fit block is chosen as the winner which is then propagated to 
neighbors.  It is in the best interest of all miners to adopt the most-fit block, failing to do so risks 
wasting resources on a mining a block that would be discarded. 
 
In order to have a decentralized solution, this kind of agreement must be empirically derived 
from the existing proof-of-work so that it is identically verifiable by all nodes on the network. 
Additionally, this fitness evaluation needs to ensure that no two competing solutions can be 
numerically equivalent. 
 
Let us suppose that two or more valid solutions will be proposed for the same block.  To weigh 
the value of a given solution, let's consider a solution for block 639254, in which the following 
hash was proposed: 
    00000000000000000008e33faa94d30cc73aa4fd819e58ce55970e7db82e10f8 
 
There are 19 zeros, and the remaining hash in base 16 starts with 9e3 and ends with f8.  This 
can value can be represented in floating point as: 
    19.847052573336114130069196154809453027792121882588614904 
 
To simplify further lets give this block a single whole number to represent one complete solution, 
and use a rounded floating-point value to represent some fraction of additional work exerted by 
the miner.  
   1.847 
 
Now let us suppose that a few minutes later another solution is advertised to the network shown 
in base16 below: 
    000000000000000000028285ed9bd2c774136af8e8b90ca1bbb0caa36544fbc2 
 
The solution above also has 19 prefixed zeros, and is being broadcast for the same blockheight 
value of 639254 - and a fitness score of 1.282.  With Nakamoto Consensus both of these 
solutions would be equivalent and a given node would adopt the one that it received first.  In 
Floating-Post Nakamoto Consensus, we compare the fitness scores and keep the highest.  
 
With both solutions circulating in the network - any node who has received both proof of works 
should know 1.847 is the current highest value, and shouldn’t need to validate any lower-valued 
solution.  In fact this fitness value has a high degree of confidence that it won’t be unseated by a 
larger value - being able to produce a proof-of-work with 19 0’s and a decimal above 1.847 is 
non-trivial.  As time passes any nodes that received a proof-of-work with a value 1.204 - their 
view of the network should erode as these nodes adopt the 1.847 version of the blockchain.  



 
All nodes are incentivized to support the solution with the highest fitness value - irregardless of 
which order these proof-of-work were validated. Miners are incentivized to support the dominant 
chain  which helps preserve the global consensus. 
 
To explore the extremes of byzantine fault tolerance in the context of an adversary, or to be 
more specific let’s look at the entire class of Blockchain Splitting attacks.  In this scenario we 
must assume a fragmented network where some node have gotten one or both of the solutions. 
In the case of nodes that received the proof-of-work solution with a fitness of 1.847, they will be 
happily mining on this version of the blockchain. The nodes that have gotten both 1.847 and 
1.240 will still be mining for the 1.847 domainite version, ensuring a dominant chain.  However, 
we must assume some parts of the network never got the message about 1.847 proof of work, 
and instead continued to mine using a value of 1.240 as the previous block.   Now, let’s say this 
group of isolated miners manages to present a new conflicting proof-of-work solution for 
639255: 
 
     000000000000000000058d8ebeb076584bb5853c80111bc06b5ada35463091a6 
 
The above base16 block has a fitness score of 1.532  The fitness value for the previous block 
639254 is added together: 
 
     1.240+1.532 = 2.772 
 
In this specific case, no other solution has been broadcast for block height 639255 - putting the 
weaker branch in the lead.  If the weaker branch is sufficiently lucky, and finds a solution before 
the dominant branch then this solution will have a higher overall fitness score, and this solution 
will propagate as it has the higher value.  This is also important for transactions on the network 
as they benefit from using the most recently formed block - which will have the highest local 
fitness score at the time of its discovery.  At this junction, the weaker branch has an opportunity 
to prevail enterally thus ending the split. 
 
To explore a worst case scenario. Let us assume that both the weaker group and the dominant 
group have produced competing proof of works for blocks 639254 and 639255.  Let’s assume 
that the dominant group that went with the 1.847 fitness score - also produces a solution with a 
similar fitness value and advertises the following solution to the network: 
 

0000000000000000000455207e375bf1dac0d483a7442239f1ef2c70d050c113 
19.414973649464574877549198290879237036867705594421756179 
1.847 + 1.415 = 3.262 

 
A total of 3.262 is still dominant over the lesser 2.772 - in order to overcome this - the 2nd 
winning block needs to make up for all of the losses in the previous block.  In this scenario, in 
order for the weaker chain to supplant the dominant chain it must overcome a -0.49 point deficit. 



In traditional Nakamoto Consensus the nodes would see both forks as essentially authoritative 
equals which creates a divide in mining capacity while two groups of miners search for the next 
block.  In Floating-Point Nakamoto Consensus any nodes receiving both forks, would prefer to 
mine on the chain with an overall fitness score of +3.262 - making it even harder for the weaker 
chain to find miners to compete in any future disagreement.  Which is intended to erode support 
for the weaker chain. This kind of comparison requires an empirical method for determining 
fitness by miners following the same same system of rules will insure a self-fulfilled outcome. 
After all nodes adopt the dominant chain normal Nakamoto Consuess can resume without 
having to take into consideration block fitness. Byztenine faults can be resolved more quickly if 
the network has a mechanism to resolve ambiguity and de-incentivise dissent. 
 
For a given block - each additional solution reduces the keyspace that another solution can fill. 
If we assume a gaussian random distribution of fitness blocks - then on average ½ of new 
solutions will be discarded as they are smaller than the incumbent solution.  If this new solution 
is more fit and dethrones the current solution - then the likelihood of this more fit solution being 
derhoned is smaller by a factor of log2n. 

Soft Fork 
Blockchain networks that would like to improve the consensus generation method by adding a 
fitness test should be able to do so using a “Soft Fork” otherwise known as a compatible 
software update.  By contrast a “Hard-Fork” is a separate incompatible network that does not 
form the same consensus.  Both patched, and non-patched nodes can co-exist and 
non-patched nodes will benefit from a kind of herd immunity in overall network stability.  This is 
because once a small number of nodes start following the same rules then they will become the 
deciding factor in which chain is chosen.  Clients that are using only traditional Nakamoto 
Consensus will still agree with new clients over the total chain length. 

Conclusion 
Cryptocurrency networks are intended to be impervious to attacks, and adapting, patching and 
protecting the network is a constant effort. An organized CoinSplit attack against a 
cryptocurrency network will undermine the guarantees that blockchain developers are 
expecting. 
 
Any blockchain using Nakamoto Consensus can be modified to use a fitness constraint such as 
the one used by a Floating-Point Nakamoto Consensus.  This is a general extension of the 
existing consensus process. A given language’s implementation of using a base16 numeric 
value vs a floating point datatype is up to the developer - conceptually this fitness test relies 
upon whole numbers and a partial value, i.e. a floating point value which can be added together. 
 
Nakamoto consensus is only deterministic over time.  One could imagine a world where a 
network became bifurcated by a fork - now if the network is sufficiently unlucky then this 
bifurcation could never resolve. Theoretically traditional Nakamoto Consensus holds no 



guarantees that it is deterministic.  Floating-Point Nakamoto consensus allows the network to 
form a consensus about new chain formation more quickly by avoiding ambiguity in the value of 
two competing chains. 


