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The exceptional combination of strength, ductility and strain hardening of high-Mn transformation- and
twinning-induced plasticity (TRIP/TWIP) steels makes them appealing for automotive applications (e.g.
vehicle weight reductions through down-gauging and room-temperature (RT) forming of complex
shaped parts). The present study uses three Fe-22/25/28Mn-3Al-3Si alloys to investigate the effect of
changes in stacking-fault energy (SFE) on the evolution of microstructure and mechanical properties
during RT tensile deformation. The SFEs were previously measured by analysis of partial-dislocation
separations using weak-beam dark-field TEM [1-4] that ultimately [1] incorporated single-crystal elastic
constants measured on polycrystalline specimens by a novel nano- mdentatlon method [5,6]. The RT
SFEs of the Fe-22/25/28Mn-3AI-3Si alloys are 15+3, 21+3, and 39+5 mJm™, respectively. Details of
alloy and specimen preparation, tensile testing (see Figure 1), and specimen preparation for transmission
electron microscopy (TEM) have been described elsewhere [1-4]. Microstructural characterization
included optical microscopy, X-ray diffraction and TEM (performed at 200 kV with a Philips CM20T).

The following important conclusions were drawn from this work: (i) A SFE of 15 mJm™ (Fe-22Mn-3Al-
3Si) resulted in a deformation microstructure dominated by highly planar slip, suppression of dislocation
cross-slip, and opcc/encp-martensite transformation as the dominant secondary deformation mechanism
(see Figure 2). The onset of grain refinement due to the formation of multiple variants of encp-martensite
within any given grain occurs from the beginning of plastic deformation and provides superior work
hardening at low and intermediate strains (0-0.34 true strain), and the hlghest strength (687+7 MPa) but
lowest elongation (85+3%) of the three alloys. (ii) A SFE of 21 mJm™ (Fe-25Mn-3Al-3Si) resulted in a
dislocation structure that exhibits both planar and wavy characteristics. The formation of both enc,-
martensite and mechanical twinning (see Figure 3) results in excellent strain hardening in the initial,
intermediate and final stages of deformation, along with the largest elongation (91+1%) of the three
alloys, albelt with intermediate strength (642+7 MPa). (iii) At low strains (0 to 0.1 true strain), a SFE of
39 mJm? (Fe-28Mn-3AI-3Si) facilitates greater dislocation cross slip and mobility resulting in the
formation of a dislocation cell structure (see Figure 4a) and reduced strain hardening compared to that of
lower SFE alloys. Formation of &ncp-martensite is completely suppressed, but mechanical twinning (see
Figure 4b) enhances the strain hardening from ~0.1 true strain to failure, resulting in excellent ductility
(87£2%) but the lowest strength (631+5 MPa) of the three alloys. (iv) The range of SFE from 15 to 39
mJm™ results in an excellent product of strength and elongation (55-58 GPa%) with only small
variations in strength and ductility, despite the transitioning of the steels from TRIP- to TWIP-
dominated behavior. Comparisons Wlth literature data indicate that strength and ductility decrease

significantly above a SFE of ~40 mJm™, corresponding to a reduction in mechanical twinning [7].
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Figure 1. RT tensile data (3 tests for
each alloy) at 4 x 10* s™ using sub-
sized flat specimens with 20-mm
gauge length, 5-mm width and 1.5-
mm thickness. (a) True stress vs true
strain. (b) Strain-hardening rate,
normalized by the experimental shear
modulus (G = 69 GPa), vs true strain.
Data in (b) are derivatives of 9" order
polynomial fits of data in (a). 4 stages
(plus 3 sub-stages for the 22%Mn

600

-
=

Straln Hardening Rate, davde (MPa)

0015

o e e e as ee e o e e e e e e alloy) of strain hardening are labeled.

200

Plastic True Strain, & Plastic True Strain, £

Figure 2. TEM BF images of 22%Mn
alloy after 0.1 plastic true strain. (a)
High density of overlapping SFs
(inclined encp-martensite laths) and (b)
grain with 2 variants of edge-on &ncp-
martensite  laths  oriented  with
(111),]|(0001)./[1-10],|I[1-210]. where
vy indicates the austenite matrix. SAD
pattern (inset) was recorded at a
<110> zone whereas the BF image
was recorded slightly off the zone
axis in a two-beam condition. Arrows
indicate lath intersections (black) or
terminations (white).

Figure 3. 25%Mn alloy deformed to
0.1 true strain. BF images of (a)
mechanical twinning and (b) fine &pcp-
martensite lath structure. The SAD
patterns (inset) were recorded at
<110> zones whereas the BF images
were recorded a few degrees off axis
in two beam conditions. SAD patterns
show twin reflections at 1/3 positions
along <111> rows except through the
central spot or gp-martensite
reflections also along <111> rows but
based on a rectangular net with
(0001), at ~1/2<111> position.

Figure 4. 28%Mn alloy deformed to
0.1 true strain. (a) BF image of grain
with dislocation cell structure. (b) DF
image of mechanical twins using a
{111} twin refection. The SAD
pattern and BF image (insets) were
recorded at a <011> zone and slightly
off axis in a two-beam condition,
respectively. 25 and 100% of grains
contain mechanical twins for true
strains of 0.10 and 0.18, respectively.
High densities of dislocations are
present in inter-twin  regions,
especiallv near twin/matrix interfaces.



