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OUTLINE

Uniform Doped pn Junction

Real pn Junctions

Photodiodes

Light Sources

Diode Temperature Sensors

Solar Cells

Applications:

Temperature

Turbidity
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UNIFORMLY DOPED PN JUNCTION
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UNIFORMLY DOPED pn JUNCTION

From Physical Fundamentals:

Relationship between electric flux D and electric field Ε Ε Ε Ε :  D = ε Εε Εε Εε Ε

Gauss’s Law, Maxwells 1st eqn:   ρ ρ ρ ρ    =          D

Poisson’s Equation:       2 ΨΨΨΨο ο ο ο =  - ρρρρ / εεεε

Definition of Electric Field:   Ε Ε Ε Ε     =  - V

Potential Barrier - Carrier Concentration:   Ψ Ψ Ψ Ψο ο ο ο = KT/q   ln (NA ND /ni2)

From Electric and Magnetic Fields :
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ΨΨΨΨοοοο FROM PHYSICS (FERMI STATISTICS)

q(Vbi) = (Ei - Ef)p-side  +  (Ef-Ei) n-side

Ψο = KT/q   ln (NA ND /ni2)

p= ni e(Ei-Ef)/KT/q n= ni e(Ef-Ei)/KT/q

ln(p/ni) = ln e(Ei-Ef)/KT/q ln(n/ni) = ln e(Ef-Ei)/KT/q

KT/q ln(n/ni) = (Ef-Ei)n-sideKT/q ln(p/ni) = (Ei-Ef)p-side

Where NA=~p in p-type silicon and ND=~n in n-type silicon

ni = 1.45E10 cm-3 for silicon
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UNIFORMLY DOPED PN JUNCTION

W = ( = ( = ( = (W1 +  +  +  + W2 )  )  )  )     = [ (2ε /ε /ε /ε / q) () () () (ΨΨΨΨο ο ο ο +VR) (1/NA + + + + 1/ND)]1/2 

W1    = W [ND/(NA + + + + ND)] W2    = W [NA/(NA + + + + ND)]

ΕΕΕΕο ο ο ο =  - [(2q/ε ) (ε ) (ε ) (ε ) (ΨΨΨΨο ο ο ο +VR) (NA ND/(NA + + + + ND))]1/2

Cj’ = ε = ε = ε = εο ο ο ο εεεεr////W            = εεεεο ο ο ο εεεεr////[(2ε/ε/ε/ε/ q) () () () (ΨΨΨΨο ο ο ο +VR) (1/NA + + + + 1/ND)]1/2 

ΨΨΨΨο ο ο ο = KT/q   ln (NA ND /ni2)

ni = 1.45E10 cm-3

Built in Voltage:

Width of Space Charge Layer, W: with reverse bias of VR volts

Junction Capacitance per unit area:

Maximum  Electric Field:

ε  = εε  = εε  = εε  = εo εεεεr =8.85E-12  (11.7) F/m

= 8.85E-14  (11.7) F/cm

W1  width on p-side                 W2 width on n-side
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TEMPERATURE DEPENCENCE OF BUILT-IN VOLTAGE

Ψο = KT/q   ln (NA ND /ni2)

ni = 1.45E10 cm-3 at 300 °K

Built in Voltage:

ni2 (T) = A T3 exp –q Eg/KT

Eg = Ego – aT2 / (T+B) Where a = 0.000702

B =  1110

Ego = 1.12 eV

Where A = 3.977E31
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EXAMPLE  CALCULATIONS

Width of space 

charge layer depends 

on the doping on 

both sides and the 

applied reverse bias 

voltage and 

temperature.
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EXAMPLE

Example: If the doping concentrations are Na=1E15 and Nd=3E15 

cm-3 and the reverse bias voltage is 0, then find the built in voltage, 

width of the space charge layer, width on the n-side, width on the p-

side, electric field maximum and junction capacitance.  Repeat for 

reverse bias of 10, 40, and 100 volts.

Ψο = Vbi = KT/q   ln (NA ND /ni2) = 

W = (W1 + W2 )  = [ (2ε/q) (Ψο +VR) (1/NA + 1/ND)]1/2   =

W1 =

W2 =

Emax =

Cj = 
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REAL JUNCTION

Real pn junctions:  The uniformly doped abrupt junction 
is rarely obtained in integrated circuit devices.  (epi layer 
growth is close).

Diffused pn junction: 

Xj

NA

NBC  = ND (x)

0
x
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REAL pn JUNCTION

Given, Xj, NA (X), ND (X)

Pick an X1 to the left of Xj.  

Calculate the total charge per 

unit area in the region 

Between X1 and Xj.  This 

charge is Q1.

Pick an X2 to the right of Xj.  

Calculate the total charge per 

unit area in the region between 

X2 and Xj.  This charge is Q2.

Q1 = Q2

V1 = V2

Calculate potential V1 from 

physical fundamentals:
V1= KT/q   ln (NA ND /ni2) + VR

Calculate potential V2 from 

E & M fields fundamentals:

2 ΨΨΨΨο ο ο ο =  - ρρρρ / εεεε

Calculate W1 = X1, W2 = X2

L = W1 + W2, Cj, other

No

No

Yes

Yes
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CURRENTS IN PN JUNCTIONS

Vbi = turn on voltage

~ 0.7 volts for Si

VD

Id

VRB = reverse 

breakdown voltage

p n

Id

+   VD -

Forward Bias

Reverse Bias

Id = Is [EXP (q VD/KT) -1]

Is

Ideal diode equation
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INTEGRATED DIODES

p-wafer

n+ p+
n-well

p+ means heavily doped p-type
n+ means heavily doped n-type
n-well is an n-region at slightly higher

doping than the p-wafer

Note: there are actually two pn junctions, the well-wafer pn 

junction should always be reverse biased
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REAL DIODES

Series Resistance =1/4.82m=207

Junction Capacitance ~ 2 pF

Is = 3.02E-9 amps

BV = > 100 volts

Size 80µ x 160µ

N

P
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DIODE SPICE MODEL

MEMS Diode

Model Parameter    Default Value    Extracted Value

Is reverse saturation current 1e-14 A 3.02E-9 A

N emission coefficient 1 1

RS series resistance 0 207 ohms

VJ built-in voltage 1 V 0.6

CJ0 zero bias junction capacitance 0 2pF

M grading coefficient 0.5 0.5

BV Breakdown voltage infinite 400

IBV Reverse current at breakdown 1E-10 A -

DXXX N(anode) N(cathode) Modelname 

.model Modelname  D Is=1e-14 Cjo=.1pF Rs=.1

.model RITMEMS D IS=3.02E-9 N=1 RS=207

+VJ=0.6 CJ0=2e-12 M-0.5 BV=400
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DIODE TEMPERATURE DEPENDENCE

Id = IS [EXP (q VD/KT) -1]

Neglect the –1 in forward bias, Solve for VD

VD = (KT/q) ln (Id/IS) = (KT/q) (ln(Id) – ln(Is))

Take dVD/dT: note Id is not a function of T but Is is

dVD/dT = (KT/q) (dln(Id)/dT – dln(Is)/dT) + K/q (ln(Id) – ln(Is))

zero VD/T from eq 1

Rewritten

dVD/dT = VD/T - (KT/q) ((1/Is) dIs/dT )

Now evaluate the second term, recall

Is = qA (Dp/(LpNd) +Dn/(LnNa))ni2

eq 1

eq 2

Note: Dn and Dp are proportional to 1/T
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DIODE TEMPERATURE DEPENDENCE

and ni2(T) = A T 3 e - qEg/KT

This gives the temperature dependence of Is

Is = C T 2 e - qEg/KT

Now take the natural log

ln Is = ln (C T 2 e - qEg/KT)

Take derivative with respect to T

(1/Is) d (Is)/dT = d [ln (C T 2 e -qEg/KT)]/dT = (1/Is) d (CT2e-qEg/KT)dT

eq 3

= (1/Is) [CT2 e-qEg/KT(qEg/KT2) + (Ce-qEg/KT)2T]

= (1/Is) [Is(qEg/KT2) + (2Is/T)]
Back to eq 2

dVD/dT = VD/T - (KT/q) [(qEg/KT2) + (2/T)])

dVD/dT = VD/T - Eg/T - 2K/q)
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EXAMPLE: DIODE TEMPERATURE DEPENDENCE

dVD/dT = VD/T - Eg/T - 2K/q

Silicon with Eg ~ 1.2 eV, VD = 0.6 volts, T=300 °K

dVD/dT = .6/300 – 1.2/300) - (2(1.38E-23)/1.6E-19

= -2.2 mV/°

I

V

T1
T2

T1<T2
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DIODE AS A TEMPERATURE SENSOR

Compare with theoretical -2.2mV/°C

Poly Heater
Buried pn Diode,

N+ Poly to Aluminum 
Thermocouple

P+

N+
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SPICE FOR DIODE TEMPERATURE SENSOR
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PHOTODIODE

B -

P+ Ionized Immobile Phosphrous donor atom

Ionized Immobile Boron acceptor atom

Phosphrous donor atom and electronP+

-

B-

+
Boron acceptor atom and hole

n-type

p-type

B - P+

B -B -

B -B -

P+ P+P+
P+

P+

P+

P+

-

B-

+

εεεε
B -B -

P+

-
P+

-
P+

-

B-

+

-
+

-
+

I

electron

and hole

pair

-
+

-
+

space charge layer
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CHARGE GENERATION vs WAVELENGTH

II

n-type

p-type

εεεε

λλλλ1 λλλλ3 λλλλ4λλλλ2

E = hνννν = hc / λλλλ

h = 6.625 e-34 j/s 

= (6.625 e-34/1.6e-19) eV/s

E = 1.55 eV (red)

E = 2.50 eV (green)

E = 4.14 eV (blue) B - P+

B -B -

B -B -

P+ P+P+
P+

P+

P+

P+

-

B-

+

B -B -

P+

-
P+

-
P+

-

B-

+

-
+-

+
-

+
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ADSORPTION VERSUS DISTANCE

I

V

n

p

IV

I

+

V

-

More Light 

No Light

Most Light 

M.A.Green and Keevers

φ(x) = φ(0) exp-α x

Find % adsorbed for Green light at 

x=5 µm and Red light at 5 µm
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PN JUNCTION DESIGN FOR PHOTO DIODE

0µm 1µm 2µm 3µm 4µm

67%

100%

@850nm

@550nm

1017

1015

Space Charge Layer

60%
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LARGE 5mm X 5mm PHOTODIODE

Isc = 0.15mA (short circuit current)

or 9.09 A/m2

5mm
x

3.33mm
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SINGLE AND DUAL PHOTO CELL

Isc = 0.585 uA

or 3.25 A/m2

Isc = 1.088 uA

or 6 A/m2
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SOLAR CELL TUTORIAL

SOME TERMS AND DEFINITIONS:

Air Mass – amount of air between sun and solar cell.  In space AM=0 at the 
equator at noon AM=1, if the sun is arriving at an angle θ , AM=1/cos θ .  AM1.5 
is the standard for most solar cell work in USA and gives a sum total of 1000w/m2 
over the entire spectrum of wavelengths from 0.2um to 2.0um

Efficiency is the ratio of the power out of a solar cell to the power falling on the 
solar cell (normally 1000w/m2 with the AM1.5 spectrum)  Since Si solar cells can 
not absorb much of the infrared spectrum from the sun, and other factors, typical 
efficiencies are limited to 26-29% for basic silicon solar cells.

Quantum Efficiency – normalized ratio of electrons and holes collected to 
photons incident on the cell at a single wavelength, given in %.

FF – Fill Factor, a figure of merit, the “squareness “ of the diode I-V characteristic 
in 4th quadrant with light falling on the cell.
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SOLAR CELL TUTORIAL

From: Solar Cells, Martin A. Green, Prentice Hall
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PHOTOCELL–ELLEN SEDLACK SENIOR PROJECT

16000um x 16000um

Ellen Sedlack 2011
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I-V CHARACTERISTICS OF PHOTO CELL

Von = 0.6 volts

Rseries = 1/slope = 1/0.129 

= 7.75ohms

Is = 1.48uA (in room light)

Ellen’s Photo Diode

0.000
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PHOTOCELL – QUANTUM  EFFICIENCY

Ellen Sedlack 2011

93% between 550nm and 650nm

Yushuai Dai
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SOLAR CELL TUTORIAL

I

+

V

-

No Light

Most Light 

V

Voc

Isc

Vmp

Imp

I

Max Power

Voc - open circuit voltage

Isc – short circuit voltage

Vmp – Voltage at maximum power

Imp – Current at maximum power

FF – FF = VmpImp/VocIsc

Diode I vs V

Power = I x V
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PHOTOCELL – POWER EFFICIENCY

Zachary Bittner Ivan Puchades

AM 1.5 Light Source
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POWER, EFFICIENCY, Isc, Voc

-6.00E-04

-5.00E-04

-4.00E-04

-3.00E-04

-2.00E-04

-1.00E-04

0.00E+00

-1.40E-03

-1.20E-03

-1.00E-03

-8.00E-04

-6.00E-04

-4.00E-04

-2.00E-04

0.00E+00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

J 4_G4

P 4_G4
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BANDGAP OF VARIOUS SEMICONDUCTORS

E = hνννν = hc / λλλλ

What wavelengths will not 

generate e-h pairs in silicon.  

Thus silicon is transparent or 

light of this wavelength or 

longer is not adsorbed?
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TYPES OF PHOTODETECTORS
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LIGHT EMITTING DIODES (LEDs)

P-side N-side

Space

charge

Layer

LightLight

Hole concentration vs distnace

xx

Electron concentration vs distance

In the forward biased diode current flows and as holes 
recombine on the n-side or electrons recombine on the p-side, 
energy is given off as light, with wavelength appropriate for the 
energy gap for that material.  λ = h c / E

h = Plank’s constant
c = speed of light
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LEDs

SFH4110

SEP8736

SEP8736
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HOMEWORK – DIODE SENSORS THEORY

1. Calculate the temperature change if a diodes forward voltage 
increases from 0.65 volts to 0.69 volts. Repeat for a change from 
0.65 volts to 0.55 volts.

2. Calculate the change in capacitance expected for a diode heated 
from room temperature 300°K to 400°K.


