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Motivation

Fluid viscosity applications

• Automotive
� Motor oil changes 

• Several factors determine when to change oil:

– Contaminants, soot, water

– Viscosity changes (shear, oxidation and soot)

� Drive-train lubricants
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� Drive-train lubricants

• Medical
� Blood coagulation rates (point-of-care treatment)

• Industrial

• Small, reliable and inexpensive -- MEMS



In-situ monitor of lubricant quality
• Multisensor diagnostics 

• Contaminants

� Water, soot 

� Electrochemical 

Impedance 

Spectroscopy (EIS)
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Spectroscopy (EIS)

• Viscosity and density

� Both change as

oil degrades over time

• Temperature and relative humidity sensors are also 
desired 

Marx et al, “Micro-Sensor for 

Monitoring Oils”, IEEE 2006



Viscosity
• Viscosity

� Internal resistance to flow or shear

� Measured with a viscometer using a small sample 
of lubricant 

� In-situ measurement is desired

• Viscometer types
M1 M2

F
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• Viscometer types
� Capillary 

� Rotational 

� Falling ball

� Vibration

� Ultrasonic

� others

M1

M2

Ω

F



Viscosity and oil viscosity
•Dynamic viscosity is 

measured in Pa*s or 

centiPoise

1 cP = 0.001 Pa*s

•Kinematic viscosity 

takes into account 

density of fluid

•Oil Viscosity depends on temperature
Viscosity vs Temperature Curves
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density of fluid

1 cSt = 0.0001 m/s2

=
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•Multigrade Oils

Temperature (celsius)



Stokes to SAE standard
www.widman.biz/uploads/Corvair_oil.pdf 
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Oil viscosity at room T
www.widman.biz/uploads/Corvair_oil.pdf 
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Low High
Viscosity



Degradation of oil

Viscosity vs Temperature Curves
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Oil will deteriorate from 10.3 cSt to 13.3 cSt at 100 C (operating T)

Corresponds to a change from 65.2 cSt to 110 cSt at 40 C – Wang, 2001

Approximately a 50 cSt resolution is needed at 40 C.
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Cantilever MEMS Viscometers

•Cantilever Beam resonators

•Change in natural frequency is 

correlated to viscosity 

•Electromagnetic or PZT 

actuation - Complex to 

integrate and fabricated 

•Optical readout

Naser et al, 2006
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•Optical readout

•Reliability in harsh 

environments?

•CMOS compatibility?

Zhao et al, 2005 Ramkumar at al, 2006



Cantilever MEMS Viscometers
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S. Boskovic, J. Chon, P. Mulvaney, and J.E. Sader, 

"Rheological measurements using microcantilevers," Journal 

of Rheology, vol. 46pp, 2002, pp. 891-899.

ωvac – resonance in vacuum

ωR – resonance in fluid

µ – mass per unit length of cantilever

ρ – density

b – beam width

Γ – hydrodynamic function (Navier-

Stokes, density, viscosity and geometry)



MEMS Viscometer
Design considerations

•CMOS compatible

•Precise amplitude control

•Simple read out (non-optical)

•Easy to fabricate

•Robust and reliable
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•Robust and reliable

•Actuation at resonant frequency is not needed
•Measure power required to maintain a constant 
precise amplitude

•Thermal actuation?



Thermally Actuated Beams

Jorge Varona et al. Design of MEMS vertical-horizontal chevron thermal actuators, 

•Large displacement

•Slower movement

•Lots of power

•Applications

•Switches

•Latching 

•Optical

•Micro-robots
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Sensors and Actuators A: Physical, Volume 153, Issue 1, 25 June 2009, Pages 127-130, 
•Micro-robots

•Micro-grippers

J Singh, J H S Teo, Y Xu, C S Premachandran, N Chen, R Kotlanka, M Olivo and C J R Sheppard, A two axes scanning SOI MEMS A two axes scanning SOI MEMS A two axes scanning SOI MEMS A two axes scanning SOI MEMS micromirror for endoscopic bioimagingmicromirror for endoscopic bioimagingmicromirror for endoscopic bioimagingmicromirror for endoscopic bioimaging Journal of Micromechanics and Microengineering, February 2008, V18, p. 025001



Thermally Actuated Plates

•Large displacement

•More power

•Applications

•Valves

•Optical

•Ultrasound
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Oliver Brand, Mark Hornung, Henry Baltes, Member, IEEE, and Claude Hafner, 

Ultrasound Barrier Microsystem for Object Detection Based on Micromachined 

Transducer Elements, JOURNAL OF MICROELECTROMECHANICAL 

SYSTEMS, VOL. 6, NO. 2, JUNE 1997 151



Microvisk Viscosity Sensor
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Proposed:

Electrothermal MEMS Viscometer

•Vertical displacement due to thermal coefficient of 

expansion difference between Si/SiO2 and Al 

(bimetallic effect) 

•In-situ P+ Si heater (joule heating).

•In-situ poly-silicon piezoresistor bridge to monitor 

membrane deflection

Vout=V2-V1

VDDV1 IR
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(bimetallic effect) 

•Resistance to motion is related to the viscosity of the 

fluid.

Aluminum Plate

Piezoresistive 

bridge
Si membrane 

(15-30um)

P+ heaterGND V2



Oil viscosity testing

Measurements taken at 

room temperature 22C
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Air-plug

5W30

10w40

Vsupply=14V

Osc=9V, 5Hz

G=41
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5W30 – 115.4 cSt

10W40 – 239.4 cSt

SAE60 – 758.4 cSt -1.8

-1.6

-1.4

-0.2 -0.1 0 0.1 0.2

DelV(5W30)=407mV

DelV(10W40)=388mV

19mV difference – not consistent

Need to amplify resistance of fluid motion to improve resolution



Cover for Viscometer

Gap

Piezoresistive 

bridge
Si membrane 

(15-30um)

P+ heater

3000um

2600um450um

•Cover amplifies 

resistance to movement 

of membrane.
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3000um
of membrane.

•Cover is smaller to 

allow for wirebonds.

•Gap can be easily 

adjusted with KOH etch 

time.



Oil viscosity testing – with cover

2.2
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5w30

10w40

Measurements taken at 

room temperature 25C

Vsupply=14V

Osc=9V, 5Hz

G=41
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DelV(5W30)=545mV

DelV(10W40)=471mV

74mV difference

1.4

1.6

1.8

2

-0.2 -0.1 0 0.1 0.2

5W30 – 124.3 cSt

10W40 – 146.5 cSt

20 cSt resolution

Improved resolution.



Conclusions

• Cooling effect of oil

• Local heating

� Quick measurements avoid heating the oil.

• Front plate to increase sensitivity

� Need to determine best gap distance.
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� Need to determine best gap distance.

• Frequency of interrogation

� Need to determine optimal frequency to avoid the 
membrane heating up to steady state.

• Need to interrogate without affecting liquid under 
test.



Microvisk Update - 2009
•Pulse heat
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V. Djakov, "Fluid Probe," 2009, 

p. 45. WO2009022121A2

Microvisk Limited

W-water, B-Brine



Thermal resonator

•1997 paper by Brand

•Thermal resonator 

vibrates with heat 

burst

•Used to monitor 

polymer formation in 
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O. Brand, J.M. English, S.A. Bidstrup, and M.G. 

Allen, "Micromachined viscosity sensor for real-time 

polymerization monitoring," Proceedings of the 1997 

International Conference on Solid-State Sensors and 

Actuators, vol. 1, 1997, pp. 121-124.

polymer formation in 

PDMS solutions



Proposed:

Electrothermal MEMS Viscometer
•In-situ P+ Si heater (joule heating).

•In-situ poly-silicon piezoresistor bridge to monitor membrane 

deflection

Vout=V2-V1

•Short thermal pulse to set diaphragm in motion.

•Damped simple harmonic oscillator with initial displacement 

determined by thermal pulse.

•Initial vertical displacement due to thermal coefficient of 

expansion.

VDDV1 IR
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expansion.

•Viscosity of the fluid dampens vibration

• Q changes, also natural frequency.

Aluminum Plate

Piezoresistive 

bridge
Si membrane 

(15-30um)

P+ heaterGND V2

US Patent Pending



Operation Principle
•Plate behavior to suddenly applied heat

• Theory developed in the 1950’s for 

jet propulsion.

• Static and dynamic (vibration) 

components

• Dynamic vibration is at natural 

frequency of the plate

• Goal was to minimize vibrations

TM
t

tyxw
h

x

tyxwEh 2

2

2

4

4

2

3

1

1),,(),,(

)1(12
∇

−
−=

∂

∂
+

∂

∂

− ν
ρ

ν

B. Boley and J. Weiner, Theory of Thermal Stresses, Malabar, Florida: Robert E. Kreiger 

Publishing Company, 1985.

RIT- Microsystems Engineering

Ivan Puchades

IVAN PUCHADES

11/20/2009
24

•Natural frequency of a square plate due to a 
heat pulse

� Due to the inertia term

� Depends on both thickness and 
size of the diaphragm

� Amplitude depends on temperature

� Natural frequency does not depend 
on temperature
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Operation Principle
Plate-fluid interaction

• Plate vibration in fluid

• Fluid-structure interaction theory

• Frequency shift due to density of 

fluid – Virtual Added Mass

• Viscous effects are neglected.
• Only become important for 

large viscosity values
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• 2009 paper relates shifts in 

frequency to viscosity for 

microstructures

υ - kinematic viscosity

ρ – density
Y. Kozlovsky, "Vibration of plates in contact with viscous fluid: Extension of Lamb's model," 

Journal of Sound and Vibration, vol. 326, 2009, pp. 332-339.



Vertical Displacement Calibration

• Veeco Wyko White Light Interferometer

• Measure z-displacement and Vout=V2-V1

Vout vs. Vertical Deflection for VBRIDGE=5V

y = -1.3419x + 7.0028

R2= 0.9918
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•Images at 0, 50, 100, 150, 200 and 250m A
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•Calibration of Vout to vertical deflection.



Thermal MEMS Viscometer
Design Outline

• Based on operation principles

� Determine Diaphragm Thickness

• Thin enough for significant displacement

• Thick enough to prevent buckling

• Evaluate diaphragm thickness vs. vertical displacement 

� Determine Pulse Energy
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� Determine Pulse Energy

• Need enough energy to obtain significant diaphragm deflection

• Short enough to prevent interaction with fluid
– Temperature affects initial displacement amplitude

• Monitor diaphragm temperature with varying pulse times

� Dynamic Measurements

• Natural frequency and quality factor Q in air

• Natural frequency and quality factor Q in fluid
– Viscosity measurement



Thermal MEMS Viscometer
Design Outline

• Based on operation principles

� Determine Diaphragm Thickness

• Thin enough for significant displacement

• Thick enough to prevent buckling

• Evaluate diaphragm thickness vs. vertical displacement 

� Determine Pulse Energy
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� Determine Pulse Energy

• Need enough energy to obtain significant diaphragm deflection

• Short enough to prevent interaction with fluid
– Temperature affects initial displacement amplitude

• Monitor diaphragm temperature with varying pulse times

� Dynamic Measurements

• Natural frequency and quality factor Q in air

• Natural frequency and quality factor Q in fluid
– Viscosity measurement



Determining Diaphragm Thickness v.
Linear actuation0.6mmx0.6mm Al on P+ HeaterVarying membrane thickness

152025
303540

Deflection 
(micrometer
s) H=5um H=13umH=15um H=15umH=16um H=18umH=18um H=20umH=22um H=24umH=28um H=30um

•h<10um

Rapid increase with lower 

power, hystheresis effect –

snapback

•10um>h>20um

Linear relation to power

Increasing 

h
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0510
15

0 0.5 1 1.5 2 2.5 3Power Input (Watts)Deflection 
(micrometer
s)

•h>20um 

Rapid increase at 1W 

leveling off at 2W

Buckling

•Good match to theoretical 

predictions

a = 2.5mm

•Keep h between 15 and 20 µm



Thermal MEMS Viscometer
Design Outline

• Based on operation principles

� Determine Diaphragm Thickness

• Thin enough for significant displacement

• Thick enough to prevent buckling

• Evaluate diaphragm thickness vs. vertical displacement 

� Determine Pulse Energy
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� Determine Pulse Energy

• Need enough energy to obtain significant diaphragm deflection

• Short enough to prevent interaction with fluid
– Temperature affects initial displacement amplitude

• Monitor diaphragm temperature with varying pulse times

� Dynamic Measurements

• Natural frequency and quality factor Q in air

• Natural frequency and quality factor Q in fluid
– Viscosity measurement



Determining Pulse Energy - Theoretical

Temp SiO2
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1-D Transient Temperature Equation 

KSiO2 = 0.009 cm2/s SiO2

semi-infinitely long body x >= 0
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Aluminum Plate

Piezoresistive 

bridge
Si membrane 

(15-30um)

P+ heater t ~ 1µsec to reach 

SiO2/fluid interface



Diaphragm Temperature Evaluation

For constant current

∆V = -2.2 mV/ ºC

PN D iode  IF  vs . Tempera ture  
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Calibrated in oven with a 

constant current circuit

+

10V
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10 KOhm
VF

∆V = -2.5 mV/ ºC

VDiode vs. Temperature Calibration
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Pulsed Diaphragm 
Temperature Evaluation in Fluid

Diaphragm Temperature 
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0.5

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Time (s)

•Forward biased diode to monitor 

temperature at 5 Hz, 200 ms pulse.

•100 C swing in air

•50 C swing in oil

•30 V pulse.

•No temperature differences can be 

appreciated tpulse< 100 us

•Energy has to be large enough to set 

diaphragm vibrating at its natural 

frequency without damaging the 

device.

0.0

0 0.5 1 1.5 2 2.5

Pulse Time (ms)



Thermal MEMS Viscometer
Design Outline

• Based on operation principles

� Determine Diaphragm Thickness

• Thin enough for significant displacement

• Thick enough to prevent buckling

• Evaluate diaphragm thickness vs. vertical displacement 

� Determine Pulse Energy
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� Determine Pulse Energy

• Need enough energy to obtain significant diaphragm deflection

• Short enough to prevent interaction with fluid
– Temperature affects initial displacement amplitude

• Monitor diaphragm temperature with varying pulse times

� Dynamic Measurements

• Natural frequency and quality factor Q in air

• Natural frequency and quality factor Q in fluid
– Viscosity measurement



LabView Integration
Device 2H 30V-30us pulse v. SAE 60 temperature
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Device 2H Natural Frequencies vs. Dynamic Viscosity
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•PCB electronics

•LabView analysis for real 

time monitoring

•Long term analysis

FFT
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Natural Frequency in Air
•30V - 30us square 

pulse

•Theoretical natural 

vibration frequency 

SSSS
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22 )1(122
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λ Eh

a
f

ij

ij

Hzf 1657911 =

T=64 us, f=15,625 Hz – corresponds to 

natural frequency of plate

λ – function (boundary conditions, a/b, υ)

E – Young’s modulus

h – plate thickness 

γ – mass per unit area of plate

a – length of plate

υ – Poisson’s ratio



Experimental Responses
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Frequency measured 

with FFT (labview).

Amplitude is measured 

as initial voltage peak 

to peak.

Q is measured by 
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Test Setup for Screening 
Experiment Device 2H 30V-30us pulse v. SAE 60 temperature
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Device 2H Natural Frequencies vs. Dynamic Viscosity
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FFT
LabView

oven

•PCB electronics

•LabView analysis for real 

time monitoring

•Long term analysis
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LabView Screenshot

RIT- Microsystems Engineering

Ivan Puchades

IVAN PUCHADES

11/20/2009
39



LabView Code
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Sensor Viscosity Test

The viscosity of Motor oil has 

a strong dependence on 

temperature.

Change temperature of motor 

oil to test a range of 

viscosities.
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viscosities.

Temperature also affects the 

natural frequency of vibration. 

But this effect is linear and 

can be easily measured in air 

and removed from the 

viscosity measurements.



Effect of Temperature on Natural Vibration 

Frequency

Change in dimensions (thermal 

expansion coefficient) and young 

modulus will change the resonant 

frequency of the vibrating plate. 

This effect is linear.
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ij

ij

λ – function (boundary conditions, a/b)

E – Young’s modulus

h – plate thickness 

γ – mass per unit area of plate

a – length of plate

υ – Poisson’s ratio

18800

19000

0 10 20 30 40 50 60 70 80

Heat pulse time and amplitude 

have no effect on frequency of 

vibration.

They affect the amplitude of 

vibration but not the frequency.

Designed plates have different 

material compositions.



Effect of Temperature on Natural Vibration 

Frequency
Frequency in Air
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•Higher frequencies due to Poly, 

Passivation and Metal layers 

lead to a negative temperature 

dependence (E dominated). Fo 

decreases with T.
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ID Device Heater Piezo Size Rheater Pass Metal Fo Q/cycles Amp(mV) UP/DOWN Slope Norm

35 P_2.5_0.16_No _PASS_Yes_MTL P Poly 2.5 16% No Yes 23724 5 2 DOWN -1.20E-03

36 P_2.5_0.02_No _PASS_Yes_MTL P Poly 2.5 2% No Yes 20922 31 5 DOWN -1.17E-03

47 Poly_2.5_0.16_No _PASS_No_MTL Poly Poly 2.5 16% No No 23616 62 10 DOWN -3.30E-04

43 Poly_2.5_0.35_Yes _PASS_No_MTL Poly Poly 2.5 35% Yes No 21042 7 4 DOWN -8.75E-04

4D18 Poly_2.5_0.02_No _PASS_No_MTL Poly Poly 2.5 2% No No 16440 100 20 DOWN -1.90E-03

25 Poly/P+_2.5_0.35_No _PASS_Yes_MTL Poly P+ 2.5 35% No Yes 18660 80 250 UP 1.39E-03

49 P_2.5_0.02_No _PASS_No_MTL P Poly 2.5 2% No No 14505 49 5 UP 1.52E-03

59 Poly_2.5_0.35_No _PASS_Yes_MTL Poly Poly 2.5 35% No Yes 16997 60 15 UP 1.94E-03

•Lower frequencies, without 

Pass and Metal, are geometry 

dominated (h3,a2). Fo increases 

with T.



Oil testing

Temperature of 10W40 

oil is increased as the 

frequency, amplitude and 

Q of the sensor is 

measured.

Frequency in 10W40 Oil
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υ - kinematic viscosity

ρ – density

Temperature

Density 

Viscosity

0.8
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Temperature ( C)
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D11
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Frequency in 10W40 Oil - Temp Removed
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Removing Temperature 
Effect

Effect of Temperature is 

removed. 

Devices with 2% heater 

show very small variation 

when effect of 

Temperature is removed.
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D36 

D49 
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0.95

1

20 30 40 50 60 70 80 90 100

Temperatue ( C)

Temperature is removed.

D11, D25 and D59 show 

similar slopes.

ID Device Heater Piezo Size Rheater Pass Metal P_M Fo Q/cycles Amp(mV)

11 P_2.5_0.16_Yes _PASS_Yes_MTL P Poly 2.5 16% Yes Yes Yes_Yes 22880 25 10

12 P_2.5_0.02_Yes _PASS_Yes_MTL P Poly 2.5 2% Yes Yes Yes_Yes 27250 20 10

36 P_2.5_0.02_No _PASS_Yes_MTL P Poly 2.5 2% No Yes No_Yes 20922 31 5

25 Poly/P+_2.5_0.35_No _PASS_Yes_MTL Poly P+ 2.5 35% No Yes No_Yes 18660 80 250

49 P_2.5_0.02_No _PASS_No_MTL P Poly 2.5 2% No No No_No 14505 49 5

59 Poly_2.5_0.35_No _PASS_Yes_MTL Poly Poly 2.5 35% No Yes No_Yes 16997 60 15

D49 

D12

Density  and Viscosity



Plotting vs. kinematic 
viscosity

y = 119374.13840481x-1.92980644

y = 1.96693324E+06x-2.44476043E+00

R2 = 9.96971433E-01
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Power (SAE60)

Exponential fit to 

experimental data.

Temperature of oil 

can be converted to 

kinematic viscosity.

Takes into account 
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y = 34672.60570331x-1.74850692

R2 = 0.99768974

y = 119374.13840481x

R2 = 0.99783978
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Takes into account 

change is density.

Best at low values.



Plotting vs. kinematic 
viscosity

Frequency in 10W40 Oil
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Similar results obtained 

with three different 

devices.

Error associated with 

Fo extraction algorithm 

and transient 
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and transient 

temperature effects.



Compare to theoretical
Normalized Frequency in 10W40 compared to Theoretical Predictions
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υ - kinematic viscosity

ρ – density
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Kinematic Viscosity ( cSt )



Testing in oils with different 

viscosities
Device D25 is placed in 

oils of different 

viscosities:

5W30, 10W40 and 

SAE60
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Temperature of the oil is 

increased.

Frequency of resonance 

changes with the oil’s 

temperature, density and 

viscosity.

2500

2700

0 20 40 60 80 100

Temperature ( C )



Remove effect of temperature
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The effect of temperature 

on the resonant 

frequency is removed 

with the data obtained 

with the device was 

tested in air.
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0 20 40 60 80 100

Temperature ( C)

In this case the change in 

frequency is reduced by 

0.13% / C due to this 

temperature effect.



Plot resonance frequency vs. viscosity

The data is plotted 

against kinematic 

viscosity. This takes into 

account the change in 

density that the oil 

experiences as the 

temperature is increased. 
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temperature is increased. 

The proposed sensor 

measured kinematic 

viscosity as the oil is not 

only sheared but also 

displaced. 
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Normalize frequency
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Fonorm10W40-t

Fonorm5W30-tNormalized at 40 

cSt so that all 

three oils have a 

common 

viscosity value. 
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Kinematic viscosity (cSt)
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Conclusion

•Successful fabrication of thermal resonator devices to 

measure viscosity.

•Improved understanding of factors affecting 

performance.

•Good sensitivity to viscosity.

•Further testing may improve sensitivity even further.

RIT- Microsystems Engineering

Ivan Puchades

IVAN PUCHADES

11/20/2009
53

•Further testing may improve sensitivity even further.

•JMEMS article under review. Requested more data to 

support claims.

•A second journal article in preparation.


