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INTRODUCTION

In certain applications, data must be electrically entered and erased from Read
Only Memory (ROM). The procedure can involve the entire ROM sections or
one memory cell at a time. From the various technologies available, we have
chosen the design of a FLOTOX EEPROM (FLOating-gate Tunneling Oxide
Electrically Erasable Programmable ROM, Figure 1.
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This EEPROM cell has double polysilicon gates, with the top polysilicon as the
control gate and the lower polysilicon as the floating gate. A thin tunneling
A\ oxide is formed above the drain in the FLOTOX Transistor.
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TUNNELING GATE OXIDE EEPROM

Another form of the FLOTOX Transistor 1s shown below. The
structure 1s simpler and smaller but is more difficult to manufacture
because of the problems associated with diffusion of phosphorous
from the gate poly through the tunnel oxide into the transistor channel
region. Most modern EEPROM devices use this structure.

Source Gate

P-well or P substrate
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INTRODUCTION

The EEPROM 1is programmed by transferring electrons between the floating-gate
and the substrate, through the tunneling oxide, by means of Fowler-Nordheim
tunneling. There are two modes of programming the EEPROM: write and erase.
First, in the write mode, the floating-gate 1s charged negatively by electrons that
tunnel from the drain to the floating gate. The charging is done by applying a
+15V voltage to the control gate and connecting both the drain and source to
ground.

The negative charge stored on the floating gate has the effect of shifting the
threshold voltage towards a more positive value. When the floating gate is
charged, the normal +5V applied to the control gate during a read operation will
not be sufficient for the transistor to conduct channel current. Only when the
floating gate 1s uncharged, will the transistor be able to conduct with +5V on the
control gate.
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PROGRAMMING THE EEPROM CELL

N\

0V Bit 15V Bit
Word Word
15V 15V
15V oV
1 1
Precharge Floating Write a 0
Gate with Electrons Remove Electrons

From Floating Gate
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READING THE CELL
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S5V
If the floating gate is charged with |
electrons the 5 volts on the control line
will not be enough to turn that transistor R
on. Thus the output will be high. Bit
Word Line
S5V
If the floating gate is uncharged with |
electrons the 5 volts on the control line :I
will turn that transistor on. Thus the Control -|]
output will be low. 5V |
1
Read "Output
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TEST SPECIFICATION

Specification

Can FLOTOX Transistor be programmed

Charge the Floating Gate

Measure the subthreshold characteristics

Discharge the Floating Gate

Measure the subthreshold characteristics
Can the FLOTOX Transistor hold the charge

Charge the Floating Gate

Measure the subthreshold characteristics

Wait 1hours, 10 hours, 100 hours, 1000hours

Measure the subthreshold characteristics
Can the FLOTOX Transistor be cycled many times
How much time does it take to charge and discharge
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FOWLER-NORDHEIM TUNNELING

J=C, E2? exp(-Eo/Ec) Vp
C
C, = ¢® m/ (87hd, m*) =L Vi =
=9.625E-7 A/V? ——
—— Vp Cs/(Cg + C
Ec = Vgo/tox Cro | PLallet Crd

Eo = 87t(2m)"2 6,32 /(3hq) =

Example: let C;=0.3 pF, C=0.2 pF, Vp=25 volts, tox = 100 A, m*=.5m, , O, =3.2
where m,=9.11E-31, h=(6.625E-34)/2n, q=1.6E-19

so Eo=2.765E8 V/cm and Ec = 10/100E-8 V/cm

N J =9.625E-7 (Ec)? exp (-2.765E8/Ec)=94.4 uA/cm?
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CMOS PROCESS MODIFICATIONS

N\

The fabrication of a FLOTOX EEPROM involves a three modifications to
the present CMOS process. An additional n+ drain implant is performed
before the polysilicon layers are deposited. A thin 100 A tunneling oxide is
grown above the additional n+ implant region. A second polysilicon layer is
deposited for the control gate.
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Step

0 Load Tube

1 Push

2 Stabilization
3 Ramp Up

4 First Oxide
5 First Anneal
6 Ramp Down
7 2nd Oxide

8 2nd Anneal
9 Ramp Down
10 Pull
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\

Gas Flow

N2 @ 15 lpm
N2 @ 15 lpm
N2 @ 15 lpm
N2 @ 15 lpm

N2 @151pm + O2 @ S lpm

N2 @ 15 lpm
N2 @ 15 Ipm

N2 @151pm + O2 @ S lpm

N2 @ 15 lpm
N2 @ 15 lpm
N2 @ 15 lpm
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Temperature
650 °C

650 °C

650 °C

650 to 950 °C
950 °C

1050 °C

950 °C

950 °C

950 °C

950 to 650 °C
650 °C

TUNNEL OXIDE RECIPE FOR ~120 A SiO2

Time

?

15 min
15 min
30 min
15 min
30 min
20 min
10 min
30 min
60 min
15 min
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EEPROM Transistor

Basic transistor with two layers
poly, tunnel oxide, and
3 connections.
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EEPROM Transistor + Select

Basic transistor with two layers
poly, tunnel oxide, and
4 connections.
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EEPROM

N\

Word Line 0
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O G
Control/Read
— — — Word Line 1
O O o
Control/Read
: : L Word Line 2
O G G
Control/Read
——— - - Word Line 3
O O G
Control/Read |
| | | Bit Lines
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Memory array of four-by-
four EEPROM cells
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A variable programmable resistor
with equal 1000 ohm resistors in
series.
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..64 k ohms

A variable programmable
resistor with binary-weighted
resistors, 1Kk, 2k, 4k, 8k .. ..
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TEST RESULTS
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HOMEWORK - EEPROM

1.0 Calculate the current that would flow through a 10 by 10
um tunnel oxide of 100 A, at a control gate voltage of 10, 15 and

20 Volts, assume CFG=0.3pF and CG=0.2 pF

2.0 How long would it take to charge the floating gate to 2.5
volts. Assume the floating gate 1s 0.3 pF floating gate and the
currents are as found in problem 1.0.

3.0 Describe the exact procedure that you would use to test the
FLOTOX transistor.
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\
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NOR AND NAND FLASH

Flash memory is a non-volatile computer storage that can be electrically erased and
reprogrammed. Itis a technology that is primarily used in memory cards and USB flash drives
for general storage and transfer of data between computers and other digital products. Itis a
specific type of EEPROM (Electrically Erasable Programmable Read-Only Memory) that is
erased and programmed in large blocks; i early flash the entire chip had to be erased at once.
Flash memory costs far less than byte-programmable EEPROM and therefore has become the
dominant technology wherever a significant amount of non-volatile, solid state storage is
needed. Example applications include PDAs (personal digital assmtants) laptop computers,
digital audio players, digital cameras and mobile phones. It has also gained popularity in console
video game hardware, where it is often used instead of EEPROMs or battery-powered static
RAM (SRAM) for game save data.

Since flash memory is non-volatile, no power is needed to maintain the information stored in the
chip. In addition, flash memory offers fast read access times (although not as fast as volatile
DRAM memory used for main memory in PCs) and better kinetic shock resistance than hard
disks. These characteristics explain the popularity of flash memory in portable devices. Another
feature of flash memory is that when packaged in a "memory card," it is extremely durable,
being able to withstand intense pressure, extremes of temperature, and even immersion in water.
Although technically a type of EEPROM, the term "EEPROM" is generally used to refer
specifically to non-flash EEPROM which is erasable in small blocks, typically bytes. Because
erase cycles are slow, the large block sizes used in flash memory erasing give it a significant

— speed advantage over old-style EEPROM when writing large amounts of data.

=\

Rochester Institute of Technology Wikipedia contributors. "Flash memory." Wikipedia, The Free Encyclopedia.
Microelectronic Engineering Wikipedia, The Free Encyclopedia, 3 Feb. 2010. Web. 11 Feb. 2010. /

: © February 22,2012 Dr. Lynn Fuller, Professor |= Page 23




&

//=1 EEPROM Technology /=\

NOR AND NAND FLASH

NOR and NAND flash differ in two important ways: the connections of the individual memory cells are
different the interface provided for reading and writing the memory is different (NOR allows random-
access for reading, NAND allows only page access) These two are linked by the design choices made in
the development of NAND flash. A goal of NAND flash development was to reduce the chip area
required to implement a given capacity of flash memory, and thereby to reduce cost per bit and increase
maximum chip capacity so that flash memory could compete with magnetic storage devices like hard
disks. NOR and NAND flash get their names from the structure of the interconnections between memory
cells. In NOR flash, cells are connected in parallel to the bitlines, allowing cells to be read and
programmed individually. The parallel connection of cells resembles the parallel connection of
transistors in a CMOS NOR gate. In NAND flash, cells are connected in series, resembling a NAND
gate. The series connections consume less space than parallel ones, reducing the cost of NAND flash. It
does not, by itself, prevent NAND cells from being read and programmed individually. When NOR flash
was developed it was envisioned as a more economical and conveniently rewritable ROM than
contemporary EPROM, EAROM, and EEPROM memories. Thus random-access reading circuitry was
necessary. However, it was expected that NOR flash ROM would be read much more often than written,
so the write circuitry included was fairly slow and could only erase in a block-wise fashion. On the other
hand, applications that use flash as a replacement for disk drives do not require word-level write address,
which would only add to the complexity and cost unnecessarily. Because of the series connection and
removal of wordline contacts, a large grid of NAND flash memory cells will occupy perhaps only 60%
of the area of equivalent NOR cells (assuming the same CMOS process resolution, e.g. 130nm, 90 nm,
65 nm). NAND flash's designers realized that the area of a NAND chip, and thus the cost, could be
further reduced by removing the external address and data bus circuitry. Instead, external devices could
communicate with NAND flash via sequential-accessed command and data registers, which would
mternally retrieve and output the necessary data. This design choice made random-access of NAND
flash memory impossible, but the goal of NAND flash was to replace hard disks, not to replace ROMs.

Wikipedia contributors. "Flash memory." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 3 Feb. 2010. Web. 11 Feb. 2010.
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132GBit NAND FLASH

ISSCC: SanDisk set to show highest density

NAND flash
Peter Clarke
2/22/2012 7:13 AM EST

LONDON — SanDisk Corp. is expected to report one of the highlights of the International Solid-State
Circuits Conference, being held in San Francisco, when it provides details of a NAND flash memory
implemented in 19-nm CMOS.

The chip, set to be discussed in paper 25.8 in the non-volatile memory session of ISSCC, is a 128-Gbit
monolithic device that stores 3-bits per memory cell, is the highest density IC ever produced. The chip
also has a 3-bit per cell write performance of 18-Mbyte per second and a read throughput of 400-Mbits
per second. The chip is a rectangle of silicon of 170 square millimeters area

The technology is described as proof that 3-bit per cell NAND has reached a level of maturity equivalent
to 1- and 2-bit per cell NAND and will be welcomed for use as motherboard memory in applications
such as tablet computers and smartphones and for solid-state drives (S5Ds).

In the competitive world of NAND flash memory this device is already in commericial production.
Other papers at ISSCC can discuss technologies and circuit ideas that are two, four or more years away
from possible commercial implementation.

SanDisk has a roadmap that sees 19-nm NAND flash ramping production in 2012, followed by a 1Y-nm
process lowering the cost of 128-Gbit memory ICs in 2013 and a 17-nm process taking monolithic
memory to 256-Gbits late in 2014, "We believe NAND technology will scale for a few more
eenerations,” Ritu Shrivastava, vice president of technology development at SanDisk told analysts
recently.

The 128-Gbit NAND flash memory chip was developed jointly by teams from SanDisk and Toshiba at
SanDisk's Milpitas campus. The effort was led by Yan Li, director of Memory Design at SanDisk.
Products based on the 128-Gbit three-bit per cell technology began shipping late last year and have
already started to ramp into high volume production. SanDisk has also developed a derivative product, a
64-Ghit NAND flash memory chip that is compatible with the industry-standard microS5D format. The
company has also started to ramp production of this additional chip technology.

Samsung Electronics Co. Lid. is also set to present a sub-20nm NAND flash memory at ISSCC and with
4 higher read throughput of 533-Mbits per second. However the memory capacity is lower than
SanDisk's at 64-Gbit.

| © February 22,2012 Dr. Lynn Fuller, Professor |= Page 26
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ISSCC: SanDisk set to show highest density
NAND flash

Peter Clarke
2/22/2012 7:13 AM EST

LONDON — SanDisk Corp. is expected to report one of the highlights of the International Solid-State
Circuits Conference, being held in San Francisco, when it provides details of a NAND flash memory
implemented in 19-nm CMOS,

The chip, set to be discussed in paper 25.8 in the non-volatile memory session of ISSCC, is a 128-Gbit
monolithic device that stores 3-bits per memory cell, is the highest density 1C ever produced. The chip
also has a 3-bit per cell write performance of 18-Mbyte per second and a read throughput of 400-Mbits
per second. The chip is a rectangle of silicon of 170 square millimeters area

The technology is described as proof that 3-bit per cell NAND has reached a level of maturity equivalent
to 1- and 2-bit per cell NAND and will be welcomed for use as motherboard memory in applications
such as tablet computers and smartphones and for solid-state drives (S5Ds).

In the competitive world of NAND flash memory this device is already in commericial production.
Ohther papers at ISSCC can discuss technologies and circuit ideas that are two, four or more years away
from possible commercial implementation.

SanDisk has a roadmap that sees 19-nm NAND flash ramping production in 2012, followed by a 1Y-nm
process lowering the cost of 128-Gbit memory ICs in 2013 and a 1Z-nm process taking monolithic
memory to 256-Gbits late in 2014, "We believe NAND technology will scale for a few more
generations,” Ritu Shrivastava, vice president of technology development at SanDisk told analysts
recently.

The 128-Gbit NAND flash memory chip was developed jointly by teams from SanDisk and Toshiba at
SanDisk's Milpitas campus. The effort was led by Yan Li. director of Memory Design at SanDisk.
Products based on the 128-Gbit three-bit per cell technology began shipping late last year and have
alreadv started to ramo into hich volume production. SanDisk has also developed a derivative product. a
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A = 2.5 Micrometer Design Rules

9 Design Layers

12 Photolithography Layers

LOCOS

Extended n+ drain

n-Type Poly Floating and Control Gate
100A Tunneling Oxide over Drain
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RIT P-WELL CMOS PROCESS

CROSSECTION

. . PMOSFET
6000An+Poly NMOSFET 3000ACVD Ox

0.75 pm Aluminum
/ —

e

field Vtadj 8e13 /
-well 11,100KeV Bare

p+D/S 2e15,150 KeV

{ BF2 thru gate oxide
n+ D/S 4e15, 100KeV Vtadj nmos 1.2e12, 60 KeV

P31 thru gate Oxide B11,1000A Kooi Vtadj pmos 1e11,60 keV

Blanket, 1000A Kooi
p-well 4e12, 50 keV, B11,1123C, 20 hr anke °

n-type substrate 10 ohm-cm (100)
SIX LAYOUT LEVELS

POLY

PSELECT

2 CC METAL
WELL

NINE PHOTO LEVELS

LVL 2 - ACTIVE

LVL 4 - NMOS VT

LVL 6 - P+ D/S

LVL 7 - N+D/S

LVL 9 - METAL

LVL 5 - POLY

Vin Vout
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EEPROM NMOS

field Vt adj 8e13
-well 4ef2, 50 keV, B11, 1123C, 20 hr B11, 100KeV Bare
| \ n+ D/S 4e15, 100KeV
P31 thru gate Oxide
p+ D/S delS, 120 KeV Vt adj blank et and nmos g;lD/hS 4e15t’ 1301%‘7
BF2 into bare silicon e , 60 KeV B11, 1000A Kooi thru gate Oxide
Three extra layers: Drain Extension

Tunnel Oxide
Floating Poly
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F960417
D1

i

T

N-TYPE WAFER, 10 OHM CM

Rho=V/I * Pi/In2 ohm-cm
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EEPROM NMOS

Well Oxide, 5000 A

Push, 12 in/minat 900 C, 5 Imp N,
Rampto 1100 C, 5 Ipm Dry O,
Soak for 48 min, 5 Ipm wet O,
Rampto 1000 C, 5 ipm N,

ﬂcfu\"’\u In/min, 5 Ipm N n-type substrate, 5-15 ohm-cm, (100)
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EEPROM NMOS

Photoresist

n-type substrate, 5-15 ohm-cm, (100)
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EEPROM
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EEPROM NMOS

p-wellimplant,4e12, 50 KeV, B11
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EEPROM NMOS

p-wellimplant, 4e12, 50 KeV, B11
N\
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EEPROM NMOS

5800 A Oxide (increase by 800 A)

-

p-well,4e12,50 KeV,B11, 1125 C, 20 hrs
Xj= 4.5 um
Bhos = 3000 ohms

P
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EEPROM NMOS

925 A alignment step height

T~

p-well
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EEPROM NMOS

V\(ell Oxide, 500 A p-well
P ] i i ] 2

Rampto 1100, Dry O,
Soak for 8 min, Dry O,
Ramp down to 1000 C, N,
Pull, 12 in/mi, N,

Py
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LPCVD SILICON NITRIDE

EEPROM

NMOS

T

p-well

N\

/

500 A Oxide
1500 A Nitride, 810 °C, 20 min

¢
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EEPROM NMOS

p-well
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/ NITRIDE PLASMA ETCH

p-well

EEPROM NMOS

T

SF6, 300 mTorr, 30 sccm
50 W, 60 seconds

ﬂlﬂ :
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EEPROM NMOS

ﬁ

p-well
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EEPROM NMOS
p-well
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p-well

IMPLANT CHANNEL STOPS
EEPROM

NMOS

T

1B. 100 keV,8E13

P

Rochester Institute of Technology

Microelectronic Engineering

© February 22,2012 Dr. Lynn Fuller, Professor

|= Page 45




EEPROM Technology

/=1
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EEPROM NMOS

p-well

1 minin BOE HF

Py
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EEPROM

GROW FIELD OXIDE

NMOS

T

p-well

soak 210 min wet 02,

Push in 900C, ramp to 1100C in 02,

ramp down to 1000C and pull.
N\

4
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EEPROM
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EEPROM
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