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INTRODUCTION

Actuators

Thermal
Two beam heated cantilever
Polyimide on Heaters
Bimetalic
heaters on diaphragms

Electrostatic
Capacitor Plate Drive
Comb Drive

Electromagnetic
Diaphragm

Peizoelectric
ZnO
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OUTLINE

Polycrystalline Silicon Thermal Actuators

Heated Polyimide Mirrors

Polyimide Thermal Actuators

A Walking Silicon Micro-Robot

Electrostatic Force

Electrostatic Impact-Drive Microactuator

Shuffle Motor

Electrostatic Comb Drive

Diaphragms

Magnetic Actuators on a Diaphragm

Heaters on a Diaphragm
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POLYCRYSTALLINE SILICON THERMAL ACTUATORS

Polycrystalline Silicon Thermal 
Actuators Integrated with Photodetector 

Position Sensors

Kevin Munger
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POLYCRYSTALLINE SILICON THERMAL ACTUATORS

No current flow
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POLYCRYSTALLINE SILICON THERMAL ACTUATORS

Current flow
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THERMAL PROPERTIES

MP Coefficient Thermal Specific
°C of Thermal Conductivity Heat

Expansion
ppm/°C w/cmK cal/gm°C

Diamond 3825 1.0 20 0.169
Single Crystal Silicon 1412 2.33 1.5 0.167
Poly Silicon 1412 2.33 1.5 0.167
Silicon Dioxide 1700 0.55 0.014
Silicon Nitride 1900 0.8 0.185
Aluminum 660 22 2.36 0.215
Nickel 1453 13.5 0.90 0.107
Chrome 1890 5.1 0.90 0.03
Copper 1357 16.1 3.98 0.092
Gold 1062 14.2 3.19 0.031
Tungsten 3370 4.5 1.78 0.031
Titanium 1660 8.9 0.17 0.043
Tantalum 2996 6.5 0.54 0.033
Air 0.00026 0.24
Water 0 0.0061 1.00

1 watt = 0.239 cal/sec
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THERMAL EXPANSION

1. How much will a 500 um long bar of aluminum expand if it is 

heated 200 C above ambient?

∆∆∆∆L/L = 22 ppm/C

= 22 x 200 = 4400 ppm = 4400E-6

∆∆∆∆L = 4400E-6 x 500 um = 2.2 um

2. If the hot arm on a 200µm actuator is 400C hotter than the cold 

arm how much longer will it be ?

∆∆∆∆L/L = 2.33 ppm/C

= 2.33 x 400 = 932 ppm = 932E-6

∆∆∆∆L = 932E-6 x 200 um = 0.186 um
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FINITE ELEMENT ANALYSIS OF THERMAL BENDING

Small arm 400 C, 10um X 200 um

Large arm 0 C, 30 um x 200 um

Maximum Displacement = 0.12 um
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SIMULATION
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THERMAL ACTUATOR MOVIE



© April 18, 2011 Dr. Lynn Fuller

Rochester Institute of Technology

Microelectronic Engineering

MEMs – Actuators

Page 12

POLYCRYSTALLINE SILICON THERMAL ACTUATORS

Summary

These devices give large mechanical motion 

on the order of several to few 10’s of micrometers

These devices are analog

Integrated with analog photodiode position detection

can give feedback for accurate position

Cycle fatigue seems to be infinite
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COEFFICIENTS OF THERMAL EXPANSION

Thermal Expansion
Silicone Elastomers 275-300 ppm/°C
Unfilled Epoxies 100-200
Filled Epoxies 50-125
Epoxy, glass laminates 100-200
Epoxy, glass laminate, xy axis 12-16
Aluminum 20-25
Copper 15-20
Alumina Ceramic 6.3
Type 400 Steels 6.3-5.6
Glass Fabric 5.1
Borosilicate Glass 5.0
Silicon 2.4
Inconel 2.4
Nickel-iron alloy (30 Ni - 61 Fe) 1.22
Quartz 0.3
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POLYIMIDE ON HEATER

Movie
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A WALKING SILICON MICRO-ROBOT
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A WALKING SILICON MICRO-ROBOT

http://www.s3.kth.se/mst/staff/thorbjorne.html

Professor Goran Stemme

Kungliga Tekniska Hogskolan

Stockholm, Sweden
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A WALKING SILICON MICRO-ROBOT
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A WALKING SILICON MICRO-ROBOT
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A WALKING SILICON MICRO-ROBOT



© April 18, 2011 Dr. Lynn Fuller

Rochester Institute of Technology

Microelectronic Engineering

MEMs – Actuators

Page 20

A WALKING SILICON MICRO-ROBOT
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A WALKING SILICON MICRO-ROBOT

Movie
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CAPACITIVE ELECTROSTATIC FORCE

F

++++++++

- - - - - - -

The energy stored in a capacitor
can be equated to the force times
distance between the plates

W = Fd  or F = W/d

2d2

εo ε r AV2
F =

d

area A

Energy stored in a parallel plate capacitor W

with area A and space between plates of d

W =      QV  =         CV2

since Q = CV

d

ε oε rAC =

ε o = permitivitty of free space = 8.85e-12 Farads/m

ε r = relative permitivitty (for air ε r  = 1)
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ELECTROSTATIC FORCE EXAMPLE

Example:  100 µm by 100 µm parallel plates

space = 1 µm, voltage = 10 V

Find the force of attraction between the two plates

ε oε r AV2

F =
2d2

(8.85e-12)(1)(100e-6)(100e-6)(10)2

F =
2(1e-6)2

F = 4.42e-6 newtons
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MEMS CANTILEVER WITH ELECTROSTATIC ACTUATOR

Poly 2

Poly 1

Metal

y

V
0       10      20      30

1
  
  
2
  
  
3
u
m

3µm gap

As the voltage is increased the electrostatic force starts to pull down the cantilever.  
The spring constant opposes the force but at the same time the gap is decreased 
and the force increases.  The electrostatic force increases with 1/d2 so eventually a 
point is reached where it is larger than the spring force and the cantilever snaps 
down all the way.  The voltage has to be reduced almost to zero to release the 
cantilever.
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MEMS CANTILEVER WITH ELECTROSTATIC ACTUATOR

Example: Plot the displacement versus current assuming poly 
sheet resistance of 200 ohms/sq, a piezoresistance coefficient 
of 1e-10 cm/dyne, d=1.5 µm, h=2µm and other appropriate 
assumptions.

1st layer poly

2nd layer poly
I

100 x100 µm

pads

400 µm

40 µm

100 x100 µm

pads
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ELECTROSTATIC FORCE MOVIE

Movie
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DIGITAL LIGHT PROJECTION SYSTEM

www.TI.com
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TI DLP - ELECTROSTATIC MIRRORS

www.TI.com

Torrisonal Mirrors Can Tilt 

Along One Axis
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ELECTROSTATIC MIRROR

MOEMs - Micro Optical Electro Mechanical Systems

Lucent Technologies–Lambda Router (256 mirror fiber optic multiplexer)

Nested Torrisonal Mirrors Can Tilt Along Three Axis
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THERMALLY ACTUATED MICRO MIRROR
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ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR
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ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR
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ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR

1. Actuator can generate high 

power

2. Maintain a position precisely

3. Move a long distance.
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ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR
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ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR

Testing

Figure shows test results
for 1Hz actuation, each impact
gives 20 nm displacement

Lifetime looks good.  Test
for 1 month, 550 million 
collisions, no visible problems

Energy was supplied to 
actuator by wireless RF 
transmision
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ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR
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ELECTROSTATIC IMPACT-DRIVE MICROACTUATOR

Conclusion

A New type of actuator is described

Diven by electrostatic force

~15 nm per impact at 100 Volts

Speed of 2.7 um/sec at 200 Hz

Life greater than 550 million impacts
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SHUFFLE MOTOR MOVIES

What actuation mechanism is this?

Movie Movie
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GAP COMB DRIVE MICROACTUATORS

Electrostatic movement parallel to wafer surface

AnchorAnchor

Anchor

From Jay Zhao
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CALCULATION OF DISPLACEMENT VS VOLTAGE

t

L

d

movement

C = εr εo t L/d

F = εr εo t V2 / 2 d
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COMBINED SPRING ELECTROSTATIC DRIVE AND 
CAPACITIVE  OR PIEZORESISTIVE READ OUT

Anchor

C1

C2

C1

C2

Anchors

and Electrical Ground

Gnd
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PICTURES & MOVIES OF ELECTROSTATIC COMB DRIVE

Movies at www.sandia.gov
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PICTURES & MOVIES OF ELECTROSTATIC COMB DRIVE

MOVABLE MIRROR

Movies at www.sandia.gov
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DIAPHRAGM

Diaphragm:

Displacement

Uniform Pressure (P)

Radius (R)

diaphragm

thickness (δδδδ)

Displacement (y)

E = Young’s Modulus,  νννν = Poisson’s Ratio

for Aluminum νννν =0.35

Equation for deflection at center of diaphragm

y = 3PR4[(1/ν)2-1]

16E(1/ν)2δ3
= (249.979)PR4[(1/ν)2-1]

E(1/ν)2δ3

*The second equation corrects all units 

assuming that pressure is mmHg,

radius and diaphragm  is µm, Young’s 

Modulus is dynes/cm2, and the 

calculated displacement found is µm.
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MECHANICAL PROPERTIES

Density Youngs  Yield Ultimate Knoop Poisson’s
Modulus     Strength       Hardness Ratio   

gm/cm3 1012dyne/cm2 1010 dyne/cm2 Kgm/mm2

Single Crystal Silicon 2.33 1.9 12     15 850      0.28
Poly Silicon 2.33 1.5 12 18 850      0.28
Silicon Dioxide 2.19 0.73 8.4 16 570      0.3
Silicon Nitride 3.44 3.85 14          28 3486      0.3
Aluminum 2.7 0.68 17       150      0.334
Nickel 8.9 2.07 59 310        112       0.31
Chrome 7.19 2.54 83         170      0.3
Copper 8.96 1.20 33 209                     0.308
Gold 19.3 0.78 103                     0.44
Tungsten 19.3 4.1 4         98          350      0.28
Titanium 4.5 1.05 140        220 100      0.34
Tantalum 16.6 1.86 35 124      0.35

10 dyne/cm2 = 1 newton/m2

Metals Handbook
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CALCULATOR FOR DIAPHRAGM DEFLECTIONS

Rochester Institute of Technology 5-Apr-06

Dr. Lynn Fuller Microelectronic Engineering, 82 Lomb Memorial Dr., Rochester, NY 14623

Deflection Ymax = 0.0151 P L4(1-Nu2)/EH3 Ymax = 0.17 µm

P = Pressure P = 15 lbs/in2

L = Length of side of square diaphragm L = 1000 µm

E = Youngs Modulus E = 1.90E+11 N/m2

Nu = Poissons Ratio Nu = 0.32

H = Diaphragm Thickness H = 35 µm

P = 1.03E+05 Pascal

Stress = 0.3 P (L/H)2 (at center of each edge) Stress = 2.53E+07 Pascal

P = Pressure Yield Strength = 1.20E+10 Pascal

L = Square Diaphragm Side Length

H = Diaphragm Thickness

Capacitance = eoer Area/d C = 7.97E-11 F

eo = Permitivitty of free space = 8.85E-14 F/cm

er = relative permitivitty = 1 for air Area = 9.00E-02 cm2

Area = area of plates x number of plates N = 1

d = distance between plates d = 1 µm

If round plates, Diameter = 0 µm

If square plates, Side = 3000 µm
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ANSYS FINITE ELEMENT ANALYSIS

Regular Si Diaphragm Corrugated Diaphragm
Layer 2: 1.5mm x 1.5mm Polysilicon 1µm thick

2mm x 2mm diaphragm 30µm thick, 50 psi applied

Rob Manley, 2005
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DIAPHRAGM DEFORMATION MOVIE

Rob Manley, 2005

200µm
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DIAPHRAGM STRESS MOVIE

Rob Manley, 2005
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PICTURES OF WAFER AFTER KOH ETCH

50 µm in 57 min ~.877 µm/min
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HEIGHT MEASUREMENT USING OPTICAL MICROSCOPE

20% KOH Etch, @ 72 C, 10 Hrs.

31 µm
500 µm
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SQUARE DIAPHRAGM MOVIE
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MAGNETIC TORSIONAL MIRROR

W

Contact

L

Supporting arm

z

Bcoil

Bm

Figure 2: Cross sectional view labels with

variables.
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Figure 1: Top down CAD design of single axis 

Torsional Mirror

Paper by Eric Harvey
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MAGNETIC DEVICES

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magfie.html

Magnetic flux density B in the center of a coil 

( ) 













+
=

2/322

2

0 2

4 Rz

IR
Bloop

π

π

µ
loopcoil BNB *= where

The magnetic pole strength is m (webers) = B A where A is the pole area

Magnetic flux density of a permanent magnet B is given by the manufacturer in 
units of weber/sq.meter or Tesla.  (some of the magnets we use in MEMS are 
2mm in diameter and have B=0.5 Tesla)

The force between two poles is Force =
µo z

m1 m2

µo = 4πx10-7 w2/Nm2
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MAGNETIC DEVICES

Force on a straight conductor in a uniform magnetic field.

F = I   L X B
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Force on a coil with current I in a uniform magnetic field
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CALCULATOR FOR DIAPHRAGM DEFLECTIONS

Pressure Force = Pressure x Area Fpress = 1.03E-01 N

Electromagnetic Force = I L B Fmagnetic = 1.88E-03 N

Assuming a constant field strength B from a Rmax of Coil = 1000 µm

permanent  magnet then, Lorentz Force = I L B Rmin of Coil = 500 µm

where I is the current in a coil of length L, Number of turns (N) = 40 turns

 L =~ 2 pi Rave x N, Rave = (Rmax+Rmin)/2 Length of coil (L) = 1.88E-01 m

Current (I) = 0.02 amperes

Magnet Field Strength (B) = 0.5 Tesla

Electromagnetic Force =

distance between magnet and coil, d = 300 µm

radius of coil, Rc = 750 µm

radius of magnet = 2000 µm

Fmagnetic = 3.70E+00 N

Cheng eq. 6-196

Materials Mechanical Properties 10 dynes/cm2 = 1 N/m2 = 1 Pascal

Yield Strength Youngs Modulus Nu

xE10 dynes/cm2 xE12 dynes/cm2 Select only one

Si3N4 14 3.85 0.3 0

SiO2 8.4 0.73 0.3 0

Si 12 1.9 0.32 1
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MAGNETIC FIELD

B
i

F
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MEMS THERMAL ACTUATOR AND POSITION SENSOR
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VERTICAL DISPLACEMENT

Veeco NT1100
Increase heater current
Measure z-displacement and Vout

Iheat (mA) Vout (mV) Z-deflection (um) vecco

0 11.8 -4

20 11.3 -2.75
30 10.6 -1.6

40 8.7 -0.65
50 6.2 0.35

60 1.3 2.65
66 -17.4 17.5
70 -21.7 22.2

y = -1.3419x + 7.0028

R
2
 = 0.9918

-15
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0
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-5 0 5 10

Z-deflection (µm)

V
o

u
t 

(m
V

)



© April 18, 2011 Dr. Lynn Fuller

Rochester Institute of Technology

Microelectronic Engineering

MEMs – Actuators

Page 60

MOVIE OF THERMAL DIAPHRAGM ACTUATION

MOVIE
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HOMEWORK - ACTUATORS

1. What makes the shuffle motors shown in this lecture move?

2. Go to www.sandia.gov and explore their Center for Integrated 
Nanotechnologies activity.  Write a sentence about what you find.

3. Visit www-mtl.mit.edu/semisubway and visit “Laboratories”, 
MEMS Clearing House, and MEMS Exchange.  Write a sentence 
about what you find.


