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OUTLINE

Light Sources

Light Detectors

Optic Components

Mirrors

Light Emissive Devices

Light Modulators

References

Homework
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SPECTRICAL DISTRIBUTION OF SOLAR RADIANT POWER

From: Micromachined Transducers, Gregory T.A. Kovacs
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BLACK BODY, AM0 AND AM1.5

From: Solar Cells, Martin A. Green, Prentice Hall
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BLACK BODY RADIATION

From: Solar Cells, Martin A. Green, Prentice HallFrom: Micromachined Transducers, Gregory T.A. Kovacs
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HOT FILIMENT “BLACK BODY” LIGHT SOURCES

600 µm

100 µm

Dave Borkholder
Senior  project 1993

MOVIE
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EMISSION SPECTRA OF THE Hg VAPOR BULB
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LED IV CHARACTERISTICS
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LIGHT EMITTING DIODES (LEDs)

P-side N-side

Space

charge

Layer

LightLight

Hole concentration vs distnace

xx

Electron concentration vs distance

In the forward biased diode current flows and as holes 
recombine on the n-side or electrons recombine on the p-side, 
energy is given off as light, with wavelength appropriate for the 
energy gap for that material.  λ = h c / E

h = Plank’s constant
c = speed of light
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LEDs

SFH4110

SEP8736

SEP8736
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RIT’S FIRST LED

GaP wafers with n-type epilayer, add 

gold metal, dice and wire bond to RIT 

thick film ceramic package.
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RELATIVE LUMINOSITY VS WAVELENGTH

Human eye perceives 550nm (green-yellow) as the brightest, 
the relative luminosity of other colors is give above
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PHOTODIODE
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WIDTH OF SPACE CHARGE LAYER

Width of space charge 

layer depends on the 

doping on both sides 

and the applied reverse 

bias voltage and 

temperature.
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ADSORPTION VERSUS DISTANCE
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More Light 
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M.A.Green and Keevers

φ(x) = φ(0) exp-α x

Find % adsorbed for Green light 

at x=5 µm and Red light at 5 µm



© April 2, 2013 Dr. Lynn Fuller, Professor

Optical Basics - MEMS

Page 16

Rochester Institute of Technology

Microelectronic Engineering

CHARGE GENERATION vs WAVELENGTH

II
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E = hνννν = hc / λλλλ

h = 6.625 e-34 j/s 

= (6.625 e-34/1.6e-19) eV/s
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To generate e-h pair in silicon we need E > Egap

E > 1.12 eV
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PN JUNCTION DESIGN FOR PHOTO DIODE

0µm 1µm 2µm 3µm 4µm

67%
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@850nm
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CHARGE GENERATION IN SEMICONDUCTORS

E = hνννν = hc / λλλλ

What wavelengths will not 

generate e-h pairs in silicon.  

Thus silicon is transparent or 

light of this wavelength or 

longer is not adsorbed?

From: Micromachined Transducers, Gregory T.A. Kovacs
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PIN, AVALANCE PHOTODIODES (APD)

n-sidep-side

Intrinsic
P                  I                 N

W2W1 0 0

PIN and Avalance photo diodes (APD) are made with an intrinsic 
(almost zero doping) layer between the N and P layers.  The depletion 
layer is increased by the width of the Intrinsic layer.  Avalance diodes 
are the same structure but used with large reverse bias (>100 volts) that 
creates large electric field in the space charge layer that can accelerate 
the electrons to velocities high enough to cause ionizing collisions 
giving a multiplication of carriers.  Each photon can generate hundreds 
of electron hole pairs. 
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PIN, AVALANCE PHOTODIODES (APD)

www.silicon-sensor.com
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Photo Multiplier Tube (low work Function)

-2000 V
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-4000 V

hv
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R
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CHARGE COLLECTION IN MOS STRUCTURES
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thin poly gate

E = hνννν = hc / λλλλ

h = 6.625 e-34 j/s 

= (6.625 e-34/1.6e-19) eV/s

E = 1.55 eV (red)

E = 2.50 eV (green)

E = 4.14 eV (blue)
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PHOTO DETECTORS

From: Micromachined Transducers, Gregory T.A. Kovacs



© April 2, 2013 Dr. Lynn Fuller, Professor

Optical Basics - MEMS

Page 24

Rochester Institute of Technology

Microelectronic Engineering

TRANSMISSION PROPERTIES OF OPTICAL GLASS
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SOLAR CELL TUTORIAL

SOME TERMS AND DEFINITIONS:

Air Mass – amount of air between sun and solar cell.  In space AM=0 at the 
equator at noon AM=1, if the sun is arriving at an angle θ , AM=1/cos θ .  AM1.5 
is the standard for most solar cell work in USA and gives a sum total of 1000w/m2 
over the entire spectrum of wavelengths from 0.2um to 2.0um

Efficiency is the ratio of the power out of a solar cell to the power falling on the 
solar cell (normally 1000w/m2 with the AM1.5 spectrum)  Since Si solar cells can 
not absorb much of the infrared spectrum from the sun, and other factors, typical 
efficiencies are limited to 26-29% for basic silicon solar cells.

Quantum Efficiency – normalized ratio of electrons and holes collected to 
photons incident on the cell at a single wavelength, given in %.

FF – Fill Factor, a figure of merit, the “squareness “ of the diode I-V characteristic 
in 4th quadrant with light falling on the cell.
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SOLAR CELL

16000um x 16000um

Ellen Sedlack 2011
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I-V CHARACTERISTICS OF SOLAR CELL

Von = 0.6 volts

Rseries = 1/slope = 1/0.129 

= 7.75ohms

Is = 1.48uA (in room light)

Ellen’s Photo Diode

0.000



© April 2, 2013 Dr. Lynn Fuller, Professor

Optical Basics - MEMS

Page 28

Rochester Institute of Technology

Microelectronic Engineering

SOLAR CELL – QUANTUM  EFFICIENCY

Ellen Sedlack 2011

93% between 550nm and 650nm

Yushuai Dai
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SOLAR CELL TUTORIAL
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I

Max Power

Voc - open circuit voltage

Isc – short circuit voltage

Vmp – Voltage at maximum power

Imp – Current at maximum power

FF – FF = VmpImp/VocIsc

Diode I vs V

Power = I x V
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SOLAR CELL – POWER EFFICIENCY

Zachary Bittner Ivan 

Puchades

AM 1.5 Light Source
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POWER, EFFICIENCY, Isc, Voc
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THERMOPILE SENSOR

www.heimannsensor.com
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RIT THERMOPILE SENSOR

Output voltage vs Input power for wafer 4
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FIBER OPTIC COMPONENTS
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LASER AND FRESNEL LENS
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OPTICAL SYSTEM

Fresnel Lens
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HINDGE
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SELF ASSEMBLY
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ELECTROSTATIC COMB DRIVE

Movies at www.sandia.gov
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ELECTROSTATIC COMB DRIVE MIRROR

Movie
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ELECTROSTATIC MIRROR

www.memsoptical.com
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MIRRORS

MOEMs - Micro Optical Electro Mechanical Systems

Lucent Technologies –

Lambda router, 256 mirror fiber optic multiplexer
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TORSION - MIRROR

Substrate

poly 1poly 0

Movable mirror

Inflection
point

Micro-mirror Perspective View

Torsion 
Hinge
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POLYIMIDE ON HEATER

Jeremiah Hebding

Movie
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THERMALLY ACTUATED MEMS MICRO MIRROR
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DIGITAL MIRROR LIGHT PROJECTION SYSTEM
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TORSIONAL MIRRORS
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TI MICROMIRROR PROJECTOR
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TEXAS INSTRUMENTS DIGITAL PROJECTION 
PRODUCTS

www.TI.com

Movie
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DXtreme PRO1
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FIELD EMISSION TIPS FOR
FLAT PANNEL DISPLAYS

1 µm

Alex Raub, 1995, now at
National Semiconductor
Santa Clara, CA
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FIELD EMISSION FLAT PANNEL DISPLAYS
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REFLECTIVE MECHANICAL LIGHT MODULATOR
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RIT LIGHT MODULATOR - SENIOR PROJECT

Sushil Shakya
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HOMEWORK – OPTICAL BASICS FOR MEMS

1. If the human body is thought of as a black body light source.  

What types of optical detector will be able to sense a human 

by sensing its IR emission?  Explain.

2. Look up the Texas Instruments Digital Light Projector 

products.  What is the cost of a developer kit for some of 

their projection products.

3. Visit the following web sites and discuss one product of 

interest for each.  www.silicon-sensor.com

www.heimannsensor.com

www.oceanoptics.com

www.memsoptical.com


