ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Evaluation of Pressure Sensor Performance

Dr. Lynn Fuller

Webpage: http://people.rit.edu/lffeee

Microelectronic Engineering

Rochester Institute of Technology

82 Lomb Memorial Drive

Rochester, NY 14623-5604

Tel (585) 475-2035

Fax (585) 475-5041

Email: <u>Lynn.Fuller@rit.edu</u>

Department webpage: http://www.microe.rit.edu

4-7-2012 Pressure_Sensor_Lab.ppt

Rochester Institute of Technology

Microelectronic Engineering

OUTLINE

Introduction

Theory

SEM Pictures

Basics

Response

Offset, Span, Linearity, etc.

Compensation

Temperature Dependence and Compensation

Frequency Response

References

Thickness = 10 μm Diameter 75 mm

Rochester Institute of Technology

Microelectronic Engineering

INTRODUCTION

In this lab we will test piezoresistive pressure sensors made at RIT and compare them with sensors made by Freescale Semiconductor

PIN NUMBER					
1	Gnd	3	٧s		
2	+V _{out}	4	-V _{out}		

NOTE: Pin 1 is noted by the notch in the lead.

MOTOROLA Freescale Semiconductor, Inc. SEMICONDUCTOR TECHNICAL DATA

10 kPa On-Chip Temperature Compensated & Calibrated Silicon Pressure Sensors

The MPX2010/MPXV2010G series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output — directly proportional to the applied pressure. These sensors house a single monolithic silicon die with the strain gauge and thin-film resistor network integrated on each chip. The sensor is laser trimmed for precise span, offset calibration and temperature compensation.

Easturas

- Temperature Compensated over 0°C to +85°C
- Ratiometric to Supply Voltage
- Differential and Gauge Options

Application Examples

- Respiratory Diagnostics
- Air Movement Control
- Controllers

Rochester Institute of Technology
Microelectronic Engineering

MPX2010 MPXV2010G SERIES

Motorota Preferred Device

COMPENSATED PRESSURE SENSOR 0 to 10 kPa (0 to 1.45 psi) FULL SCALE SPAN: 25 mV

FREESCALE MPX2202 SERIES PRESSURE SENSORS

UNIBODY PACKAGES

MPX2202A CASE 344-15

MPX2202AP/GP CASE 344B-01

MPX2202DP CASE 344C-01

MPX2202ASX CASE 344F-01

MPAK

SMALL OUTLINE PACKAGES

MPXV2202GP CASE 1351-01

MPXV2202GP CASE 1369-01

MPXV2202GP CASE 482A-01

MPXM2202A CASE 1320-02

MPXM2202GS/AS CASE 1320A-02

RIT PRESSURE SENSORS

CALCULATION OF EXPECTED OUTPUT VOLTAGE

The equation for stress at the center edge of a square diaphragm (S.K. Clark and K.Wise, 1979)

Stress = $0.3 \text{ P}(\text{L/H})^2$ where P is pressure, L is length of diaphragm edge, H is diaphragm thickness

For a 3000 μ m opening on the back of the wafer the diaphragm edge length L is 3000-2 (500/Tan 54.74°) = 2290 μ m

Rochester Institute of Technology

Microelectronic Engineering

CALCULATION OF EXPECTED OUTPUT VOLTAGE (Cont.)

Stress =
$$0.3 P (L/H)^2$$

If we apply vacuum to the back of the wafer that is equivalent to and applied pressure of 14.7 psi or 103 N/m²

 $P = 103 \text{ N/m}^2$

 $L=2290 \mu m$

Stress = $2.49E8 \text{ N/m}^2$

 $H=25 \mu m$

Hooke's Law: Stress = E Strain where E is Young's Modulus $\sigma = E \epsilon$

Young's Modulus of silicon is 1.9E11 N/m²

Thus the strain = 1.31E-3 or .131%

Rochester Institute of Technology

Microelectronic Engineering

CALCULATION OF EXPECTED OUTPUT VOLTAGE (Cont.)

The sheet resistance (Rhos) from 4 point probe is 61 ohms/sq. The resistance is R = Rhos L/W. For a resistor R3 of L=350 μ m and W=50 μ m we find: R3 = 61 (350/50) = 427.0 ohms

R3 and R2 decrease as W increases due to the strain assume L is does not change, W' becomes 50+50x0.131% W' = 50.0655 μm R3' = Rhos L/W' = 61 (350/50.0655) = 426.4 ohms

R1 and R4 increase as L increases due to the strain assume W does not change, L' becomes 350 + 350x0.131% R1' = Rhos L'/W = 61 (350.459/50) = 427.6 ohms

CALCULATION OF EXPECTED OUTPUT VOLTAGE (Cont.)

IF RESISTORS ARE SINGLE CRYSTAL SILICON

In addition to the effects of strain on the resistance if the resistor is made of single crystal silicon there is also a significant piezoresistive effect on the resistor value. Strain effects the mobility of holes and electrons in silicon. The resistors on the diaphragm of the pressure sensor drawn above have current flow longitudinal (R1 and R4) and transverse (R2 and R3) to the strain. The strain is tensile on the top surface of the diaphragm where the resistors are located if positive pressure is applied to the top of the diaphragm. The peizoresistive coefficient for R1 and R4 is 71.8 and for R2 and R3 is -66.3 E-11/Pa. The calculations above give the stress as 2.49E8 Pa thus the hole mobility will decrease in R1 and R4 (R increases in value) by $2.49E8 \times 71.8e-11 = 17.9\%$ while R2 and R3 (decrease in value) because the mobility increases by $2.49E8 \times 66.3E-11 = 16.5\%$, thus the overall effect will be dominated by the piezoresistance rather than the effect of strain on the dimensions.

Rochester Institute of Technology
Microelectronic Engineering

EXPRESSION FOR RESISTANCE

$$R = Ro \left[1 + \pi_L \sigma_{xx} + \pi_T (\sigma_{yy} + \sigma_{zz}) \right]$$
 where
$$Ro = (L/W)(1/(q\mu(N,T) \ Dose))$$

 π_L is longitudinal piezoresistive coefficient π_T is transverse piezoresistive coefficient σ_{xx} is the x directed stress, same direction as current σ_{yy} is the y directed stress, transverse to current flow σ_{zz} is the z directed stress, transverse to current flow

In the <110> direction

	$\pi_{L}\left(E^{-11}/Pa\right)$	π _T (E-11/Pa)
Electrons	-31.6	-17.6
holes	71.8	-66.3

Rochester Institute of Technology Microelectronic Engineering

CALCULATION OF EXPECTED OUTPUT VOLTAGE FOR SINGLE CRYSTAL RESISTORS

SEM OF RIT PRESSURE SENSOR

Front Back

Rochester Institute of Technology

Microelectronic Engineering

BASICS

Check that vo1 and Vo2 are near Vsupply/2 and Vo ~ 0

Rochester Institute of Technology

Microelectronic Engineering

Apply and release chuck vacuum to observe change in output voltage

PRESSURE SENSOR PACKAGING

PRESSURE SENSOR TEST SETUP

Apply pressure, measure and compare with other pressure gages. Collect data.

Rochester Institute of Technology Microelectronic Engineering

OUTPUT VOLTAGE VERSUS PRESSURE

psi	mV
0	60.6
5	63.84
10	66.32
15	68.95
20	72.28
25	75.62
30	78.68
35	81.25
40	84.39
45	87.21

PRESSURE SENSOR CHIP – VER 3

Pressure Sensor Temperature Sensor Humidity Sensor

Diffused Resistors

Length = Width =

Note: upper left is not connected so individual resistances can be measured.

ELECTRICAL MEASUREMENTS

Measured resistance: Rtop = 3.538 Kohm

Rright = 3.537 Kohm

Rbottom = 3.537 Kohm

Rleft = 3.537 Kohm

Measured Voltages: Vo1 = 2.535 V

Vo2 = 2.504 V

Vo1-Vo2 = 31.0 mV

Rhos $\sim = 150$ ohm/sq

Rochester Institute of Technology

Microelectronic Engineering

OUTPUT VOLTAGE VS PRESSURE

Diffused Resistor Pressure Sensor at 5 Volts B							
Pressure	Vo1-Vo2	Pressure	V01-V02 @	72			
psi	mV	psi	mV				
0	30.9	0	26				
1.49	34.2	1.33	28.3				
2.09	35.4	3.3	31.9				
3.19	37.6	5.55	36.1				
4.12	39.4	6.6	38.1				
5.42	42.1	9.95	44.6				
6.43	45	11	46.8				
7.11	45.8	13.12	51				
8.2	47.9	14.45	55				
9.27	50.1	15.77	56.8				
10.16	51.8						
11.21	53.9						
12.16	55.75						
13.2	57.8						
14.05	59.6						
15.24	62						

Sensitivity = 0.406 mV/psi/V

or 0.0589 mV/KPa/V

or 0.589 mV/KPa @ 10VDC

Rochester Institute of Technology Microelectronic Engineering

ZERO AND SPAN COMPENSATION

COMPARISON OF THIN AND THICK DIAPHRAGM

Diffused Resistors

Sensitivity $\sim = 200 \text{mV}/12 \text{psi}$ = 10 mV/psi Sensitivity ~ = 100mV/15psi = 6.67 mV/psi

Rochester Institute of Technology Microelectronic Engineering 2011 Mustafa Koz

EXCESSIVE PRESSURE

EVALUATION OVER TEMPERATURE

Polysilicon Resistors

No Compensation

Compensated

Rochester Institute of Technology Microelectronic Engineering

TEST SETUP FOR FREQUENCY MEASUREMENT

BALLOON ABOUT TO POP

MEASURED STEP RESPONSE

Rochester Institute of Technology
Microelectronic Engineering

STEP TO IMPULSE TO FREQUENCY RESPONSE

Excel Spreadsheet

Data

Filtered Normalized Step Response

Derivative gives Impulse Response

Fourier Transform Gives frequency response

Real Part in dB

STEP TO FREQUENCY.XLS

MEASURED STEP RESPONSE

FILTERED NORMALIZED STEP RESPONSE

Microelectronic Engineering

IMPULSE RESPONSE

FOURIER TRANSFORM

FREQUENCY RESPONSE

REFERENCES

- 1. http://www.lecroy.com/tm/library/LABs/PDF/LAB740.pdf
- 2. Microsystem Design, Stephen D, Senturia, Kluwer Academic Publishers, 2000, pg 488-494
- 3. Micromachined Transducers, McGraw Hill, 1998, Kovacs, pg 253
- 4. www.youtube.com/watch%3Fv%3DvBN-P5H1-4g

HOMEWORK – PRESSURE SENSOR LAB

- 1. The example calculations shown on page 4-10 make a lot of assumptions about the fabrication process such as the starting wafer is 500um thick. In fact the starting wafer is thinned and polished to reduce the KOH etch time and the back grinding process is not that exact giving variation of starting wafer thickness between 250 and 350um. List other variables that might vary by more than 10% and discuss how that would effect the sensitivity and offset of the pressure sensor.
- 2. Discuss the linearity of the pressure sensor. Why do thicker diaphragms give more linear results over a given pressure range. How is the sensitivity affected by thicker diaphragms.
- 3. Should the pressure be applied to the top or bottom of the sensor? Why?
- 4. If the compensation network uses laser trimmed resistors which resistor should be trimmed to make the output zero if Vo+ is +50mV to begin with?
- 5. Use the bridge balance Excel spread sheet to adjust the zero and span of the pressures sensor on page 20

LAB INSTRUCTORS NOTES

Show MEMS chip
Take Picture
Apply Vacuum
Take Picture
Measure Vo1, Vo2 and Vo1-Vo2 with no pressure
Measure Vo1, Vo2 and Vo1-Vo2 with pressure
For RIT packaged device take data for Vo1-Vo2 versus Pressure
Determine Offset and span
Correct offset and span
Take data for Vo1-Vo2 with corrections.
Take data for Commercial Pressure Sensor

