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Abstract: Linear I/O systems are a fundamental tool in systems theory, and have been used to design complex circuits and control
systems in a variety of settings. Here we present a principled design method for implementing arbitrary linear I/O systems with
biochemical reactions. This method relies on two levels of abstraction: first, an implementation of linear I/O systems using
idealised chemical reactions, and second, an approximate implementation of the ideal chemical reactions with enzyme-free,
entropy-driven DNA reactions. The ideal linear dynamics are shown to be closely approximated by the chemical reactions
model and the DNA implementation. We illustrate the approach with integration, gain and summation as well as with the
ubiquitous robust proportional-integral controller.
1 Introduction

Synthetic biochemical reaction networks with desired
dynamic behaviours are difficult to design because of
inherent non-linearities and substantial uncertainties in
reaction mechanisms. Yet natural systems abound in which
reliable behaviour is obtained from the composition of
enormous numbers of molecular subsystems. It seems clear
that some kind of design theory for biochemical reaction
networks ought to be obtainable.

In engineering, the design of dynamic systems from
unreliable or poorly modelled basic components is not a
new problem. The field of control systems engineering is
focused on the task of designing dynamic I/O systems that
interact with and augment the behaviour of unknown or
poorly modelled dynamic modules. In this paper, we
explore the applicability of a standard design theory, linear
I/O systems, to the design of predictable and robust
synthetic biochemical systems. Linear I/O systems are
present in almost any engineered device, from stereo
amplifiers to aircraft autopilots, and can be implemented
electronically, mechanically and in software. It has been
shown that chemical reaction networks can approximate
arbitrary polynomial ordinary differential equations [1].
However, prior work in this area lacked a practical,
modular, design methodology for implementing a specified
ODE, and did not address the implementation of more
abstract I/O systems. In this paper, we show that linear I/O
systems can also be implemented with chemical reactions
and, in particular, with enzyme-free entropy-driven DNA
reactions.

Broadly speaking, there exists two types of synthetic
biochemical devices: in vivo and in vitro. A variety of
dynamic devices have been constructed in vivo, including
toggle switches [2], oscillators [3, 4] and band pass filters
[5, 6]. However, these examples represent one-of-a-kind
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systems and not general design methodologies for
biochemical systems. The absence of predictive models for
complex systems designed from modular components
suggests synthetic biology in vivo may suffer from a lack
of a large library of well-characterised parts. In contrast,
systems synthesised from DNA in vitro [7–10] are
becoming substantially more complex and reliable. With
DNA, well-understood models of hybridisation and strand
displacement are available to design and predict molecular
interactions [11–13]. Recently, it was shown that any
physically realistic abstract chemical reaction can be well-
approximated by an appropriately designed DNA strand-
displacement reaction [14]. Furthermore, similar systems
have been demonstrated experimentally: DNA and RNA
have been used to design a variety of devices including
catalysts and amplifiers [9], logic gates [7] and detectors [15].

This paper is based on and inspired by the above results in
designing predictable DNA devices, although in principle
other biochemical implementations of linear I/O systems
could be constructed. Specifically, we show that any linear
I/O system can be built from the composition of three types
of reactions, namely catalysis, degradation and annihilation.
We then show how to implement these reactions with DNA
devices, but of course, any other programmable system of
molecules could also be used.

A biomolecular device can be abstracted to an I/O device
taking an input signal, such as a time varying concentration
of some chemical species, and producing an output signal.
The I/O systems abstraction allows for the composition of
devices into systems of interacting sub-systems: the output
of one device is ‘wired’ to the input of another.

Formally, an I/O system is specified by an input space,
output space, an internal state and a mapping that describes
the output signal generated given an input signal and an
initial internal state. Often an I/O system corresponds to a
modular part of some physical system. In equations, we
IET Syst. Biol., 2011, Vol. 5, Iss. 4, pp. 252–260
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write an I/O system in state space [16]

ẋ = f (x, u) (1)

y = g(x, u) (2)

where u: R � Rn is an input signal, y: R � Rm is an output
signal, x: R � Rp is the internal state of the system and
n, m, p [ Z+. Note that signals such as u are functions of
time; however, for simplicity we will write u instead of u(t).

I/O systems may be composed in parallel or in series, to
obtain a composite I/O system, by combining output signals
or by setting the output signal of one system to be the input
signal for another system. Composition can be represented
graphically in a block diagram by drawing a block for each
subsystem and representing the connections with directed
edges, as illustrated in Fig. 1a.

Fig. 1 PI controller block diagram and behaviour

a Block diagram for a PI controller. The signal u is an input, y is an output
signal and x1, . . . , x6 are internal signals. The negative sign next to the edge
going into the left summation block means that the output of the summation is
x1 ¼ u–y. The PI controller is a feedback system that tracks an input signal
over a large class of plants P (s). Here the plant P (s) is implemented with
reactions (29) and (30)
b Input signal driving the PI controller. The input signal u is a square wave
c Output trajectories for the ideal PI controller as well as the PI controller
implemented with ideal chemical reactions and the DNA model. The
steady-state error observed in the DNA model of the PI controller is a
result of the sequestration of signal molecule y+ in intermediate reaction
species involved in the left summation block
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Of particular interest are controllers. A controller is an I/O
system built around a particular system to be controlled
(called the ‘plant’). For example, the controller illustrated in
Fig. 1a is a proportional-integral (PI) controller built around
the plant P (s) with control input u and output y. Often the
plant corresponds to a module with unknown or poorly
modelled dynamics. The controller is designed to produce
an output from the plant that is a desired function of the
control input u. Controlled systems can be categorised into
open-loop and closed-loop controllers. In an open-loop
system the input to the plant does not depend on its output.
In a closed-loop system (such as in Fig. 1a) the input to the
plant is a function of its output, involving a comparison
between the input to the controller and the output of the
plant. Although open-loop systems are generally easier to
analyse than closed-loop systems, feedback allows the
engineer to design systems that are robust to modelling
uncertainty and errors such as exogenous disturbances and
retroactivity [17, 18].

The most well-understood and useful class of I/O systems
are those constructed from linear subsystems. The ubiquitous
PI control scheme is composed of linear subsystems. Linear
systems are trivially composable – the serial composition
of two linear systems is again linear, as are the parallel
composition and sum. The analysis of a large linear system
is no more difficult than the analysis of its smaller
components. Furthermore, although the class of linear
systems may appear limiting, essentially all physical
systems are approximately linear near their desired
operating regions. For this reason linear controllers are used
to control a large class of non-linear plants.

There are two fundamental representations of linear
systems, the state space representation and the frequency
space representation. Both representations are useful and
complementary in design and analysis. A typical single-
input single-output linear system can be represented in state
space by

ẋ = Ax + Bu (3)

y = Cx + Du (4)

Where u, y: R � R, x [ Rn, and A, B, C, D are
appropriately sized real matrices. The frequency space
representation of this system can be found by taking the
Laplace transform of (3)–(4).

sX (s) = AX (s) + BU(s) (5)

Y (s) = CX (s) + DU(s) (6)

The frequency space representation is only defined for linear
systems. However, in frequency space, linear systems can be
analysed based on their I/O behaviour, abstracting away the
internal state x through the transfer function

Y (s)

U (s)
= C(sI − A)−1B + D (7)

Two plants may have different state space representations, yet
have identical transfer functions. The transfer function
reduces composition and comparison of dynamical systems
based on their I/O behaviour to simple algebra.

The atomic components of linear I/O systems are linear
zero- and first-order systems. In particular, signal splitting,
integration, gain and summation (see Fig. 2) form the basis
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Fig. 2 Primitive components of continuous time linear I/O systems represented as a block diagram, state space equations and frequency space
equations
of all linear systems. To apply the results of linear systems to
synthetic biology, our task is to implement these basic
primitives and describe how they can be physically
composed to obtain any arbitrary linear system.

2 Results

We show how to realise linear I/O systems at two levels of
abstraction. First, we describe an intermediate representation
that uses simple, idealised chemical reactions. This level of
abstraction requires that we instantiate the notions of a signal
and of integration, gain and summation blocks. Second, we
describe an implementation of the intermediate representation
in which the ideal chemical reactions are approximated by
enzyme-free DNA devices. The DNA implementation is one
of many possible implementations that are suggested by the
form of the intermediate representation. For example, one
might also imagine implementations with transcriptional
switches [8] or MAPK cascades [19–21], to name a couple
of possibilities. Throughout this paper we use the PI
controller [16] illustrated in Fig. 1a both as a design
objective and as a running example. It should be clear,
however, that our approach allows for the implementation of
any finite dimensional linear system with chemical reactions
and with DNA devices.

2.1 Signals represented as chemical
concentrations

A natural representation of a signal within a block diagram
might be via the time-varying concentration of a particular
chemical species. However, concentrations can only be non-
negative, whereas signals in arbitrary linear systems take on
positive and negative values. Therefore we represent a
signal u by the difference in concentration between two
particular chemical species. Specifically, for each signal u
we introduce the chemical species u+ and u2.

Remark 1: We have overloaded the symbols u+ and u2 so
that they represent both time varying concentrations and the
names of a particular chemical species. It should be clear
from the context which usage is intended.

The species u+ and u2 are referred to as the positive
and negative components of the signal u, respectively,
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and the actual value of u equals the difference between
its components

u = u+ − u− (8)

One implication of this scheme is that no signal value has a
unique representation. For example, u+ ¼ 100 M and
u2 ¼ 100 M represents the same signal value as u+ ¼ 0 M
and u2 ¼ 1 M. We refer to the unique representation of u
where u+ ¼ 0 M or u2 ¼ 0 M as the minimal representation
of u. Forcing signals to be represented minimally would be
more efficient in an actual implementation of this scheme. To
accomplish this forcing, the implementations below include
reactions in which the positive and negative components of a
signal annihilate each other, as in (11).

To allow for blocks to be ‘wired’ arbitrarily, it should be
that a block has no retroactive effect on its input signals
[17]. For example, in electrical implementations of I/O
systems, we require that devices draw almost no current
from their input signal sources, so that the meaning of a
signal is not changed by the devices using it. One way to
satisfy this notion is to require that signals act as catalysts
for the reactions implementing blocks to which they are
wired. In the sequel we show how integration, gain and
summation blocks can be approximated using a minimal set
of reaction types: catalysis, degradation and annihilation
reactions, given in (9), (10), (11), respectively.

u Q u + y (9)

u Q ∅ (10)

u+ + u− Q ∅ (11)

2.2 Integration

An integration block takes as input a signal u(t) and produces
the output signal y(t) =

�t

0
u(t) dt+ y(0) with t [ R. The

transfer function of an integration block is 1/s, as shown in
Fig. 2. A chemical reaction network that implements this
block is as follows

u+ Q
a

u+ + y+ (12)

y+ + y− Q
h ∅ (13)
IET Syst. Biol., 2011, Vol. 5, Iss. 4, pp. 252–260
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Where a, g, h [ R+. The block consists of two catalysis
reactions (12) and an annihilation reaction (13).

Remark 2: We collapsed two reactions, u+
Q
a

u++
y+ and u−

Q
a

u− + y−, into reaction (12). We use this
notation with both + and + superscripts for brevity.

The catalysis of u+ and u2 at rate a and annihilation of y+

and y2 results in the following mass action equations

u̇+ = u̇− = 0 (14)

ẏ+ = au+ − hy+y− (15)

ẏ− = au− − hy+y− (16)

ẏ = ẏ+ − ẏ− = au (17)

Note that the bimolecular annihilation reaction drives
the concentration of chemical species y+ and y2 towards
the minimal representation of the signal y, and causes the
dynamics of y+ and y2 to be non-linear. However,
the signal dynamics, y ¼ y+ 2 y2, remain linear owing to
the symmetry between ẏ+ and ẏ−.

2.3 Gain and summation

Gain and summation blocks produce output signals that are
linear combinations of their inputs. A gain block takes as
input a single signal u(t) and produces the output signal
y(t) ¼ ku(t) where k [ R. A summation block takes as
input the signals {ui(t)}

n
i=1, and produces the output signal

y(t) = S
n
i=1ui(t). The transfer functions for gain and

summation are Y (s)/U(s) ¼ k and Y (s) = S
n
j=1Uj(s),

respectively. The following chemical reaction network that
outputs a linear combination of its input signals implements
both gain and summation

u+i Q
gki u+i + y+ (18)

y+ Q
g ∅ (19)

y+ + y− Q
h ∅ (20)

Where ki, g, h [ R+ for i [ {1, 2, . . . , n}. In the special case
n ¼ 1, this chemical representation approximates the gain
block in Fig. 2 for k ≥ 0. For n . 1 this chemical
representation approximates the summation block in Fig. 2.
The chemical reaction network consists of 2n catalysis
reactions (18), two degradation reactions (19) and one
annihilation reaction (20). The chemical reaction network
gives us the following mass action equations

u̇+
i = u̇−i = 0 (21)

ẏ+ = g
∑n

i=1

kiu
+
i − y+

( )
− hy+y− (22)

ẏ− = g
∑n

i=1

kiu
−
i − y−

( )
− hy+y− (23)

ẏ = g
∑n

i=1

kiui − y

( )
(24)
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For a constant inputs ui, the steady state value of y is

lim
t�1

y(t) =
∑n

i=1

kiui (25)

The chemical representation can be extended to allow
negative multiplicative weights. For ki , 0, the catalysis
reactions (18) are replaced with

u+ Q
gki u+ + y+ (26)

As before, the annihilation reaction drives the concentration
of chemical species y+ and y2 towards a minimal
representation of the signal y without affecting the
dynamics of the signal y.

2.4 Any linear I/O system can be approximated
with ideal chemical reactions

Although the dynamics of the chemical representations are
not equivalent to the dynamics of integration, gain and
summation, the chemical representations can be used to
approximate the dynamics of integration, gain and
summation. As shown in the prequel, the signal dynamics
of the chemical representations are linear systems, which
means that we can compare the I/O behaviour of the
chemical implementations to ideal integration, gain and
summation, through their transfer functions. In particular, as
shown in the SI Text, increasing the rate parameter g for
gain and summation has the effect of speeding transient
dynamics. This results in a closer time-response to ideal
gain and summation given a step input. We regard a
chemical representation of a linear I/O system as an
approximation of an ideal linear I/O system if the transfer
functions of the two systems can be made equivalent in the
limit as the rate parameter g goes to infinity.

Equation (17) shows that in the chemical implementation
of integration, the output signal y is the integral of au. This
results in the transfer function

Y (s)

U (s)
= a

s
(27)

To produce the integration dynamics described in Fig. 2,
we can set the rate a ¼ 1 or compose this system in series
with a chemical implementation of gain where k ¼ a21.
The equivalent dynamics of the chemical representation
where a ¼ 1 and an integration block are illustrated in
Fig. 3a.

The transfer functions for the chemical representations of
gain and summation are computed from (24)

Y (s) = g

s + g

∑n

i=1

kiUi(s) (28)

The result is a first-order stable linear system. Shown in
Figs. 3b and c, the chemical representation tracks the
behaviour of the gain block (n ¼ 1) illustrated in Fig. 2 and
weighted summation (n . 1) with zero steady-state error
for step input signal u(t) and square wave input signals
u1(t) and u2(t). Increasing g the I/O behaviour of
this system can be made arbitrarily close to the I/O
255
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behaviour of a weighted summation

lim
g�1

Y (s) =
∑n

i=1

kiUi(s)

To produce the summation dynamics described in Fig. 2, set
ki ¼ 1 for i ¼ 1, . . . , n. A similar result follows for the
negative weight extension where reactions (18) are replaced
with reactions (26) for some set i [ I # {1, . . . , n}.

Because any finite dimensional linear system can be
decomposed into integration, gain and summation blocks
the chemical reaction representation of linear I/O systems
can be used to approximate any finite dimensional linear
I/O system. It follows directly that as g goes to infinity, the

Fig. 3 Step response of the linear block model, chemical reaction
representation, and DNA model of integration, gain and summation
blocks

a Integration block: The linear block model follows the trajectory
y(t) =

�t

0
u1(t). The ideal chemical reaction representation follows this

trajectory precisely. The DNA model drifts from the ideal chemical
reaction trajectory as molecular fuel species are consumed
b Gain block: The linear block model follows the trajectory y(t) ¼ 3u1(t).
The chemical reaction representation produces the correct steady-state
output. As with integration, the DNA model closely follows the ideal
chemical reaction trajectory, but drifts as fuel species are consumed
c Summation block: The linear block model follows the trajectory
y(t) ¼ u1(t) + u2(t). Given inputs u1 and u2 the output should consist of
four monotonically decreasing steps. The chemical reaction representation
follows each step in steady-state. As before, the DNA model drifts from
the ideal chemical reaction representation as fuel species are consumed
For each system the input u1 is a square wave
256
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transfer function of an implemented chemical system
approaches that of the ideal specification.

Theorem 1: All finite-dimensional continuous time linear
systems can be approximated with catalysis and degradation
reactions.

Two details of the ideal chemical reaction model may be
particularly concerning when implementing with
biomolecules: first, the rate g will be physically constrained
to some (very large) finite value. Second, it may be
impossible to precisely match reaction rates between
chemical reactions as specified, for example, by the reaction
pairs (18) and (19). In simulation, realistic values of g can
produce a time-response close to the specified system for
step inputs, as illustrated in Figs. 1c and 3 for integration,
gain and summation components as well as the more
complicated PI controller. If reaction rates involving
positive and negative components do not match, then for
fast annihilation reaction rates, h, the signal dynamics of
the resulting system can be shown to be close to those of a
related linear switch system. Details are discussed in the SI
Text.

2.5 Optimising the chemical representation

The approximation of a linear system by a chemical reaction
network can be made arbitrarily good by tuning the rate
parameter g. However, as mentioned, in practice it is not
possible to assign arbitrary values to g. A time response
closer to the ideal system may be obtained by exploiting
other parameters and decreasing the order of the chemical
reaction model. For example, a gain composed with an
integrator as illustrated in Fig. 4a is a first-order system.
The unoptimised chemical representation (Fig. 4b) is a
second-order system, however this system can be
implemented precisely using an optimised first-order
weighted integration reaction (Fig. 4c). Illustrated in
Fig. 4d, given a step input, the unoptimised representation
of this system results in steady-state error (which decreases
as g increases), while the optimised representation replicates
the dynamics of the ideal I/O system exactly.

In general two other optimisations can be made in the
chemical representation: First, the weighted summation of n
signals may be approximated by the second-order
representation of n summation and gain reaction sets, or a
first-order weighted summation reaction network. Second,
the weighted or unweighted summation of n integrated
signals may be approximated by second or third-order
representation of integration composed with gain (in the
weighted case) and summation reaction sets, or
implemented precisely by n weighted integration reaction
sets, all of which share the same output species. In addition
to reducing the overall order and output error of the
approximation, these optimisations minimise the total
number of species needed to implement a linear I/O system
with catalysis, degradation and annihilation reactions. We
take advantage of these optimisations in the following
example.

2.6 Example 1: chemical representation of
a PI controller

To illustrate our method, we construct the PI controller shown
in Fig. 1a. The PI controller is an example of a closed loop
linear system designed to drive the output of the plant P to
a desired set point u. The key feature of the PI controller is
IET Syst. Biol., 2011, Vol. 5, Iss. 4, pp. 252–260
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that it tracks any step input u with zero steady-state error for a
large class of plants. Such a device could be useful, for
example, in regulating a fuel species driving a variety of
downstream devices. Suppose the plant P is realised by
leaky expression and chemical devices that produce and
consume the signal species x+5 according to the reactions

∅Q
gd1 x+5 (29)

x+5 Q
gd2 ∅ (30)

for d1, d2 [ R+. As derived in the SI Text, the effect of (29)–
(30) can be modelled as the plant P (s) ¼ (1 + d2)21. Note
that d1 does not appear in this expression as a result of the
symmetric effect (29) has on molecular species x+5 and x−5 .

In general, there are two steps to compiling a biochemical
controller from a block diagram. First, signals in the block
diagram are enumerated, and it is determined which signals
correspond to chemical species. Second, primitive blocks
are instantiated by sets of chemical reactions. The PI
controller in Fig. 1a consists of signals u, y, x1, . . . , x5, x6

where u is the input signal and y ¼ x6 is the output signal.
Using optimisations from the prequel, we approximate the
PI controller using species u+, x+1 , x+4 , x+5 , in the chemical
reactions outlined in Fig. 5. The signal dynamics of the
chemical realisation is a second-order linear approximation

Fig. 4 Approximation error for optimised and unoptimised ideal
chemical reaction representations of the I/O system ẋ ¼ (1/2)u,
y ¼ x

a Block diagram representing the ideal weighted integration system
b Unoptimised chemical reaction representation. This representation consists
of three pairs of signal species, a gain block and an integration block. The
signal dynamics resulting from mass action kinetics is a second-order
linear system
c Optimised chemical reaction representation. This representation consists of
two pairs of signal species and a single weighted integration block. The signal
dynamics resulting from mass action kinetics is a first-order linear system that
matches the dynamics of the ideal system
d Error trajectory for the signal y given u(0) ¼ u+(0) 2 u2(0) ¼ 1 and
x(0) ¼ y(0) ¼ 0. The unoptimised chemical reaction representation of the
weighted integration system results in some non-zero steady-state error
which decreases monotonically as g increases. The Optimised chemical
reaction representation results in zero steady state error
IET Syst. Biol., 2011, Vol. 5, Iss. 4, pp. 252–260
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of the first-order PI controller with the following signal
dynamics

ẋ1 = g(u − x5 − x1) (31)

ẋ4 = kI x1 (32)

ẋ5 = g((kPx1 + x4 + d1) − (1 + d2)x5) (33)

As shown in the SI Text, and demonstrated in Fig. 1, this
controller produces the stable output limt�1y(t) ¼ u(t) for
any step input u(t) when d1, d2 [ R+. Additionally, as
g � 1, the transient dynamics of the chemical controller
approach those of the ideal PI controller.

2.7 DNA implementation

The ideal chemical reactions representation of arbitrary linear
systems is a useful template which can be used to guide
the implementation of arbitrary linear systems in physical
substrates. Choosing a particular biomolecular
implementation forces us to consider physical constraints
such as limited supplies of energy-storing fuel molecules
and finite maximum reaction rates.

In enzyme-free DNA reactions, energy can be stored in
metastable DNA molecules [7, 9, 10, 22]. Chemical
reactions are driven by the transformation of metastable fuel
into non-reactive waste products, and the reaction pathways
are programmed through the sequence of nucleic acids and
the availability of single-stranded binding sites, or
‘toeholds’. Toehold-mediated branch migration and strand
displacement reactions are quantitatively well-understood
[11–13], and many complex devices have been constructed
around this design principle [7–10]. Recently it was shown
that a DNA-based schema built on these design principles
may approximate a large class of unimolecular and
bimolecular chemical reactions [14]. Here we illustrate and
simulate a DNA-based implementation of catalysis,
degradation and annihilation (Fig. 6), as well as the PI
controller introduced in Example 1, implemented using the
schema of Soloveichik et al. Details of the implementation,
simulations and conditions under which the implementation
may be considered valid are given in the SI Text.

Fig. 5 PI controller from Fig. 1a implemented in ideal chemical
reactions
257
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Fig. 6 Ideal chemical reaction, DNA implementation and signal response for

a Catalysis
b Degradation
c Annihilation reactions
Domain 1q is a subset of the domain 1. The initial concentration of fuel species Gi, Ti, Li, Bi, LSi and BSi are set to Cmax ¼ 1, 10, 100, 1000 nM. For the catalysis
and degradation response, u(0) ¼ 1 nM. For the annihilation response, u+(0) ¼ 1z nM, u2(0) ¼ 0.5z nm, where z ¼ 2 is a scaling factor that attenuates for the
initial fast transient where u+ and u2 are sequestered in intermediate species. All other initial concentrations are set to zero
Following the notation from Soloveichik et al. [14], in this
implementation of chemical reaction primitives for linear I/O
systems we set qmax to be the maximum strand displacement
rate and assume q1 ≪ qmax. All reactions are entropy-driven
with potential energy stored in fuel species Gi, Ti, Li, Bi,
LSi and BSi. Fuel species are assumed to appear in initial
concentration Cmax. Numbers label domains, which are
unique sequences of nucleotides. In this parameterising
scheme, two labelled domains are complementary if and
only if their labels are x and x∗, respectively. Of note is the
domain 1∗q, which denotes a subsequence of the domain 1∗

with length tuned to the reaction rate qi.
Signal molecules in a given linear system correspond to

single stranded DNA made uniquely addressable via a
sequence of three domains on the 5′ end. Signal molecules
catalyse the degradation of fuel species into non-interacting
waste molecules. As with any entropy-driven system the
trivial steady-state occurs where the fuel species have
degraded into non-reactive waste. However, in order to
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approximate the ideal chemical reactions, we limit our
interest to the regime where the concentration of fuel
species is much greater than the concentration of signal
molecules. As shown in Fig. 6, the dynamics of the DNA
system approach those of the ideal chemical reaction as
Cmax increases.

Fig. 6a illustrates the production of signal molecule y and
degradation of fuels Gi and Ti catalysed by the signal
molecule u. For large Cmax the concentration y(t) is
approximately the integral of the concentration u(t). Fig. 6b
shows the degradation of fuel species Gi driven by the
presence of signal molecule u. Again, for large Cmax the
concentration trajectory u(t) is approximately exponential
decay. Lastly, Fig. 6c shows the degradation of fuel species
Li and LSi driven by the presence of both u+ and u2

molecules. Note that the dynamics of this reaction can be
separated into fast dynamics where u+ and u2 are
sequestered in intermediate species through their reactions
with Li and LSi, respectively, and slow dynamics where u2
IET Syst. Biol., 2011, Vol. 5, Iss. 4, pp. 252–260
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degrades into waste through its interaction with the
intermediate species that sequestered u+. Since it is the
slow dynamics that approximate the ideal annihilation
reaction, the initial concentration of u+ and u2 must be
scaled to attenuate for sequestering effect of the fast
dynamics. That is, the initial concentration of all
unregulated signal molecules must be scaled by a factor of
two in order to approximate the ideal chemical reaction
network. Again, the approximation of ideal annihilation
improves for large Cmax. Simulations of integration, gain
and summation blocks scaled to realistic parameters are
given in Fig. 3. Details of the implementation and
simulations are given in the SI Text.

2.8 Example 2: DNA PI controller

Utilising the DNA implementation of catalysis, degradation
and annihilation, we again simulate a realisation of the PI
controller illustrated in Fig. 1a. As with the ideal chemical
reaction representation, the plant P is realised by the
chemical reactions (29) and (30). Note that as before, this
disturbance models leaky expression of a signal molecule,
and downstream load on the output signal. This realisation
is based on the optimised chemical representation shown in
Fig. 5. The step response of the DNA implementation of
the PI controller in the face of the plant P are shown in
Fig. 1c. Note that as discussed earlier, the unregulated input
u was scaled in order to attenuate the sequestering effect of
the annihilation reaction. Note that the output trajectory of
the DNA implementation of the PI controller closely
matches the output trajectory of the ideal chemical reaction
implementation discussed in Example 1 at the beginning of
the simulation, tracking the input u with near zero
steady-state error. The drift away from zero steady-state
error as time increases is owing to the consumption of finite
fuel molecules modelled in the DNA implementation.
Details of the implementation and simulation are given in
the SI Text.

3 Conclusions

We have demonstrated a method for realising arbitrary linear
I/O systems at two levels of abstraction: (i) an intermediate
chemical reaction representation, and (ii) a proposed DNA
implementation. The intermediate chemical reaction
representation of linear I/O systems provides a template for
implementation using arbitrary biomolecules. Notably our
construction of linear I/O systems relies on only three types
of chemical reactions: catalysis, degradation and annihilation.

Although we have explored in some depth an
implementation of linear I/O systems using DNA, one
could imagine an implementation of these reactions using a
variety of different substrates: gene regulatory networks,
MAPK cascades or some combination of these systems [4–
6, 19–21]. The DNA implementation provides a specific
avenue for composing existing DNA devices, and case
study with which to examine experimental considerations
such as finite chemical concentrations, realistic reaction
rates, unmodelled chemical reactions and data collection.
We are currently working on an experimental
implementation of the ideas in this paper using DNA, and
plan to report on this effort soon.

The results here are representative of a new focus on
abstraction in chemical systems. In building a design theory
for chemistry, chemical reactions networks are usually the
IET Syst. Biol., 2011, Vol. 5, Iss. 4, pp. 252–260
doi: 10.1049/iet-syb.2010.0056
most natural intermediate representation – the middle of the
‘hourglass’ [23]. Many different high level languages and
formalisms have been and can likely be compiled to
chemical reactions, and chemical reactions themselves (as
an abstract specification) can be implemented with a variety
of low level molecular mechanisms.

4 Materials and methods

All simulations are performed in Mathematica, Version
7.0.1.0 [24], with numerical solver NDSolve. Mathematica
files are available upon request. Specific details of the ideal
chemical realisation and DNA implementation of linear I/O
primitives as well as the PI controller, including chemical
reaction network models and reaction rates, are given in the
SI Text. Analysis of the class of chemical plants (29) and
(30) as well the effect of the PI controller on that class of
plants are also discussed in the SI Text.
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1 The Role of γ in the Time Domain

In practice the rate γ in summation and gain (Main Text Equations (18–20)) is bounded by physical con-

straints. The steady-state value for gain and summation given a step input is invariant to γ. However,

increasing γ for summation and gain given a step input has the effect of driving the system towards steady-

1



state faster. From the state space equations for summation,

u̇+i = u̇−i = 0

˙y+ = γ

(
n∑
i=1

kiu
+
i − y

+

)
− ηy+y−

˙y− = γ

(
n∑
i=1

kiu
−
i − y

−

)
− ηy+y−

ẏ = γ

(
n∑
i=1

kiui − y

)
.

Let y∗ be the steady-state value of y, then

y(t) = e−tγ (y(0)− y∗) + y∗.

Let w ∈ (0, 100). Solving for the time it takes to move w% of the way from y0 to y∗ given constant input ui,

0 = y(t)− y(0)− w

100
(y(0)− y∗)

= (y(0)− y∗)
(
e−tγ +

w

100
− 1
)

t =
1

γ
ln

100

100− w
.

For step input u, the time it takes to reach w% of the steady-state value y∗ scales as the inverse of γ.

2 Fast Annihilation and Imperfect Rate Matching in the Chemical

Realization of Integration, Gain, and Summation

One potential pitfall of treating each signal as the difference in concentration between two molecular species

as we have done is the need to match rate parameters between chemical reactions. For example, the chemical

realization for integration (Main Text Equations (12–13)) relies on the rate parameter α to be the same for

two separate chemical reactions. Worse yet, the chemical realization for summation and gain (Main Text

Equations (18–20)) requires both γ and ki to be the same for multiple reactions, and any difference results

in nonlinear signal dynamics. In practice it may only be possible to guarantee close reaction rates. One

solution to this problem is to require fast annihilation rates η � αγ, ki and annihilation reactions for all

inputs u±. With these requirements the chemical realization for integration becomes

u+ + u−
η−⇀η−⇀ ∅ (1)

u±
α±

−−⇀α
±

−−⇀ u± + y± (2)

y+ + y−
η−⇀η−⇀ ∅. (3)

2



Assuming η � α, we can approximate the signal dynamics as a switched linear system [1] utilizing time-scale

separation [2],

u̇+ = u̇− = −ηu+u− ≈ 0 (4)

ẏ = ˙y+ − ˙y− ≈ α+u+ − α−u− (5)

≈

 α+u, u > 0

α−u, u ≤ 0.
(6)

Similarly, for summation and gain, the full chemical realization becomes

u+ + u−
η−⇀η−⇀ ∅ (7)

u±i
γ±k±i−−−−⇀
γ±k±i−−−−⇀ u±i + y± (8)

y±
γ±

−−⇀γ
±

−−⇀ ∅ (9)

y+ + y−
η−⇀η−⇀ ∅, (10)

for i = 1, 2, . . . , n. Assuming η � γ, ki, the signal dynamics can again be approximated as a switched linear

system. For compactness, consider a gain with n = 1,

u̇+i = u̇−i = −ηu+u− ≈ 0 (11)

˙y+ = γ+
(
k+u+ − y+

)
− ηy+y− (12)

˙y− = γ−
(
k−u− − y−

)
− ηy+y− (13)

−ηy+y− ≈ 0 (14)

ẏ ≈



γ+(uk+ − y) u > 0 ∧ y > 0

γ+uk+ − γ−y u > 0 ∧ y ≤ 0

γ−(uk− − y) u ≤ 0 ∧ y > 0

γ−uk− − γ+y u ≤ 0 ∧ y ≤ 0.

(15)

In general linear switched systems are more difficult to analyze than non-switched linear systems. However,

for many stable systems, it is possible to compute bounds the behavior of the switched linear system in

terms of the ideal non-switched linear system. Illustrated in Fig. 1, in simulation, the PI controller (Main

Text Figure 1), performs well even under ±10% variation in reaction rates.
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3 The Effect of Production and Degradation of Signal Species on

the Chemical Realization of a Linear I/O System

Production and degradation disturbances, illustrated in Main Text Equations (29) and (30) respectively,

may approximate the effect of unregulated chemical devices or leaky expression on a chemical linear I/O

system. We consider the effect of these disturbances on the output signal for the chemical realization of

integration, weighted integration, gain, and weighted summation.

For integration, illustrated in Equations (12–13), let α = kγ. The mass action kinetics of the disturbed

system is,

u̇+ = u̇− = 0 (16)

˙y+ = γ(ku+ + δ1 − δ2y+)− ηy+y− (17)

˙y− = γ(ku− + δ1 − δ2y−)− ηy+y− (18)

ẏ = ˙y+ − ˙y− = γ(ku− δ2y). (19)

The transfer function as γ →∞ can the be written,

lim
γ→∞

Y (s)

U(s)
=

k

δ2
. (20)

In general, the effect of the chemical disturbance is to turn an integrator into a gain, or a weighted integrator

into a weighted summation.

For gain and weighted summation, illustrated in Main Text Equations (18–20), the disturbed system can

be written,

u̇+i = u̇−i = 0 (21)

˙y+ = γ

(
n∑
i=1

kiu
+
i − (1 + δ2)y+ + δ2

)
− ηy+y− (22)

˙y− = γ

(
n∑
i=1

kiu
−
i − (1 + δ2)y− + δ2

)
− ηy+y− (23)

ẏ = γ

(
n∑
i=1

kiui − (1 + δ2)y

)
. (24)

The transfer function as γ →∞ can be written,

lim
γ→∞

Y (s) = (1 + δ2)−1
n∑
i=1

Ui(s)ki. (25)

The effect of the chemical disturbance is to change all the weights of the weighted summation by a factor

(1 + δ2)−1.
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4 Implementation and Simulation Details

Simulations were generated via mass action kinetics models in Mathematica[3]. DNA implementations were

designed in the schema of Soloveichik et al. [4]. In this section we provide details of the chemical reaction

networks, rate constants, and initial conditions used to produce simulations appearing in the main text.

4.1 Catalysis, Degradation, Annihilation

Main Text Figure 6 shows simulated trajectories of the DNA implementation of catalysis, degradation, and

annihilation reactions. For each initial fuel concentration Cmax, the rates qi and qmax were tuned in order to

approximate a particular ideal chemical reaction. Rate constants qi and qmax used to produce the simulated

trajectories in Main Text Figure 6 are shown in Supplementary Table I. Of note is that the rate parameters

qi and qmax for Cmax = 1 µM are physically realizable for catalysis, degradation, and annihilation [5].

Catalysis Degradation Annihilation

(M−1s−1) (M−1s−1) (M−1s−1)

Cmax (nM) qi qmax qi qmax qi qmax

1 106 109 106 – – 106

10 105 108 105 – – 106

100 104 107 104 – – 106

1000 103 106 103 – – 106

Table I: Rate parameters for the DNA implementation of catalysis, degradation, and annihilation, shown in

Main Text Figure 6.

4.2 Integration, Gain, Summation

Integration, gain, and summation are the primitive blocks of any linear I/O system. These primitive blocks

are approximated by ideal chemical reactions, and the ideal chemical reactions are implemented enzyme-

free DNA reactions illustrated in Main Text Figure 6. Main Text Figure 3 examines the ideal chemical

realization and DNA implementation of integration, gain, and summation, in response to a square wave

input for physically realizable reaction rates and chemical concentrations.

The linear model, as well the ideal chemical realization, and DNA implementation of integration and the

square wave input are illustrated in Supplementary Figure 2. Using the schema introduced by Soloveichik et

al., integration is implemented with DNA using two catalysis and one annihilation reaction. The square wave

5



input is implemented with one annihilation reaction, and two impulse signal species inputs. In practice such

an impulse in accomplished by pipetting in a small volume of input species at high concentration. Unregulated

inputs in the DNA model are added at twice their concentration in the ideal chemical realization in order to

attenuate for the fast sequestration of u+ and u− in H3 and HS3 respectively. The result is the integration

of a square wave input,

y(t) =

∫ t

τ=0

αu1(τ)dt (26)

u1(t) =

 3.33× 10−8 t < 600

−3.33× 10−8 otherwise
(27)

α ≈ 0.00833. (28)

The linear model, ideal chemical realization, and DNA implementation of gain and the square wave input

are illustrated in Supplementary Figure 3. Gain is implemented in DNA using two catalysis, two degradation,

and one annihilation reaction. Again, the square wave input is implemented with one annihilation reaction,

and two impulse signal species inputs. As before unregulated inputs u+ and u− are added at twice their

ideal concentration in order to attenuate for sequestration in the annihilation implementation. The result is

a gain multiplied by a square wave input,

y(t) = ku1(t) (29)

u1(t) =

 5× 10−9 t < 4000

−5× 10−9 otherwise
(30)

k = 3. (31)

Finally, the linear model, ideal chemical realization, and DNA implementation of summation and the two

square wave inputs are shown in Supplementary Figure 4. Two-input summation is implemented in DNA

using four catalysis, two degradation, and one annihilation reaction. Each square wave input is modeled

with an annihilation reaction and a series of impulse signal species inputs. Again, the unregulated inputs

u+ and u− are added at twice their ideal concentration to attenuate for sequestration. The result is the

summation of two square wave inputs,

y(t) = u1(t) + u2(t) (32)

u1(t) =

 4× 10−9 t ∈ [0, 5000) ∪ [10000, 15000)

−4× 10−9 otherwise
(33)

u2(t) =

 8× 10−9 t < 10000

−8× 10−9 otherwise.
(34)

(35)
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4.3 PI Controller with a Chemical Disturbance

In the main text we use the recurring example of the PI controller illustrated in Main Text Figure 1a and

approximated using an optimized ideal chemical realization in Main Text Figure 5. It is a well known result

in linear systems theory that the PI controller can track a step input with zero steady-state error for a large

class of plants or disturbances P (s). In the chemical approximation and DNA implementation we consider a

production and degradation disturbance on the output species y±, shown in Main Text Equations (29–30).

These disturbances can be used to model leaky expression of signal molecules, or the retroactive effect of

molecular devices we wish to control. As illustrated in the prequel, the production disturbance has no effect

on the signal dynamics, however in the context of the PI controller, a degradation disturbance on the signal

species y± has the effect of a multiplicative plant P (s) = (1 + δ2)−1. It is a well known result from control

theory that for a step input u(t), the output of the PI controller is robust to multiplicative plants P (s) [6],

meaning that for any multiplicative plant the controller will track the input signal u(t) with zero steady-

state error. Similarly, illustrated in Main Text Figure 1c, the chemical realization of the PI controller with

a production and degradation disturbance can track a square wave input with zero steady-state error.

4.3.1 DNA Implementation of the PI Controller

The linear model, ideal chemical realization, and DNA implementation of the PI controller with production

and degradation disturbances is presented in Supplementary Figure 5. The optimized PI controller consists

of two weighted summations (four catalysis, two degradation, and one annihilation reaction each), and a

weighted integrator (two catalysis reactions and an annihilation reaction). The step input, as before, is

implemented with an annihilation reaction and a series of impulse signal species inputs. As mentioned

before, in practice an impulse of signal species is generated by pipetting in a small volume of input species

at high concentration. Again, in the DNA implementation the unregulated u+ and u− inputs are added at

twice their ideal concentration to attenuate for sequestration in the annihilation implementation. Identical

production and degradation reactions were composed with the ideal chemical realization and DNA model,

resulting in an implementation of the PI controller in Main Text Figure 1 with kI = kP = 1, and P (s) = 1
3 .
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5 Supplementary Figures

50 000 100 000 150 000 200 000 250 000 300 000
Time, sec.

-4. 10 -9

-2. 10 -9

2. 10 -9

4. 10 -9

y

rate-varied chemical
realization

ideal chemical
realization

Figure 1: Output trajectories from chemical realizations of the PI Controller from Main Text Figure 1. The

ideal chemical realization matches reaction rates between pairs of reactions. Rate-varied chemical realization

output trajectories were obtained by varying the reaction rates ±10% from the ideal reaction rates randomly

with a uniform distribution over 50 simulations.
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Linear Model
Ideal Chemical
Realization DNA Implementaiton

u±
1

α−α− u±
1 + y±

u±
1 +G±

1

q1−q1− O±
1

O±
1 + T±

1

qmax−−−qmax−−− u±
1 + y±

y+ + y− η−η− ∅

y+ + L2

qmax−−−−−−
qmax

H2 +B2

y− + LS2

qmax−−−−−−
qmax

HS2 +BS2

y− +H2

qmax−−−qmax−−− ∅

u1(t) =
3.33× 10−8 0 ≤ t < 600

−3.33× 10−8 600 ≤ t < 1200

u+
1 + u−

1

η−η− ∅

u+
1 + L3

qmax−−−−−−
qmax

H3 +B3

u−
1 + LS3

qmax−−−−−−
qmax

HS3 +BS3

u−
1 +H3

qmax−−−qmax−−− ∅
u+
1 (0) = 33.33 nM

u−
1 (600) = 66.67 nM

u+
1 (0) = 66.67 nM

u−
1 (600) = 133.33 nM

α = 1
2
q1Cmax

η = 1
2
qmaxCmax

Cmax = 1 µM
q1 = 1.67× 104/M/s
qmax = 106/M/s

(a)

(b)

y(t) =
t

τ=0
αu (τ)dτ1

Figure 2: Linear model, ideal chemical realization, and DNA implementation for integration of a square

wave input. (a) Integration is approximated by three ideal chemical reactions. The DNA implementation

is modeled by eight reactions. The square wave input is implemented by a single annihilation reaction and

two instantaneous additions of chemical species at time t = 0 and t = 600. (b) Rate and concentration

parameters for the simulated trajectories that appear in Figure 3a. The initial concentration of fuel species

G±i , T±i , Li, Bi, LSi, and BSi, are set to Cmax. All other initial concentrations are set to 0 nM unless

otherwise specified.
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y(t) = ku1(t)

u±
1

γk−γk− u±
1 + y± u±

1 +G±
1

q1−q1− O±
1

O±
1 + T±

1

qmax−−−qmax−−− u±
1 + y±

y± γ−γ− ∅ y± +G±
2

q2−q2− ∅

y+ + y− η−η− ∅
qmax

y+ + L3

qmax−−−−−− H3 +B3

y− + LS3

qmax−−−−−−
qmax

HS3 +BS3

y− +H3

qmax−−−qmax−−− ∅

u1(t) =
5× 10−9 0 ≤ t < 4000

−5× 10−9 4000 ≤ t < 8000

u+
1 + u−

1

η−η− ∅

u+
1 + L4

qmax−−−−−−
qmax

H4 +B4

u−
1 + LS4

qmax−−−−−−
qmax

HS4 +BS4

u−
1 +H4

qmax−−−qmax−−− ∅
u+
1 (0) = 5 nM

u−
1 (4000) = 10 nM

u+
1 (0) = 10 nM

u−
1 (4000) = 20 nM

Cmax = 1 µM
q1 = 1.5× 104/M/s
q2 = 0.5× 104/M/s
qmax = 106/M/s

k = q1 q2
γ = 1

2
q2Cmax

η = 1
2
qmaxCmax

/

Linear Model
Ideal Chemical
Realization DNA Implementaiton

(a)

(b)

Figure 3: Linear model, ideal chemical realization, and DNA implementation of a gain using a square wave

input. (a) Gain is approximated with five ideal chemical reactions. The DNA implementation is modeled

with nine reactions. The square wave input is modeled by an annihilation reaction and two instantaneous

additions of chemical species at time t = 0 and t = 4000. (b) Rate and concentration parameters for the

simulated trajectories that appear in Figure 3b. Initial concentration of fuel species are set to Cmax. All

other initial concentrations are set to 0 nM.
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y(t) = 2
i=1 kiui(t)

u±
1

γk1−−γk1−− u±
1 + y±

u±
2

γk2−−γk2−− u±
2 + y±

y± γ−γ− ∅

y+ + y− η−η− ∅

u+
1 + u−

1

η−η− ∅

u+
1 (0) = 4 nM

u−
1 (5000) = 8 nM

u+
1 (10000) = u+

1 (10000
−) + 8 nM

u−
1 (15000) = u−

1 (15000
−) + 8 nM

u2(t) =
8× 10−9 0 ≤ t < 10000

−8× 10−9 10000 ≤ t < 20000

u+
2 + u−

2

η−η− ∅

u+
2 (0) = 8 nM

u−
2 (10000) = 16 nM

ki = qi/q 3, i ∈ { 1, 2}
γ = 1

2
q3Cmax

η = 1
2
qmaxCmax

u±
1 +G±

1

q1−q1− O±
1

O±
1 + T±

1

qmax−−−qmax−−− u±
1 + y±

u±
2 +G±

2

q2−q2− O±
2

O±
2 + T±

2

qmax−−−qmax−−− u±
2 + y±

y± +G±
3

q3−q3− ∅

y+ + L4

qmax−−−−−−
qmax

H4 +B4

y− + LS4

qmax−−−−−−
qmax

HS4 +BS4

y− +H4

qmax−−−qmax−−− ∅

u+
1 + L5

qmax−−−−−−
qmax

H5 +B5

u−
1 + LS5

qmax−−−−−−
qmax

HS5 +BS5

u−
1 +H5

qmax−−−qmax−−− ∅
u+
1 (0) = 8 nM

u−
1 (5000) = 16 nM

u+
1 (10000) = u+

1 (10000
−) + 16 nM

u−
1 (15000) = u−

1 (15000
−) + 16 nM

u+
2 + L6

qmax−−−−−−
qmax

H6 +B6

u−
2 + LS6

qmax−−−−−−
qmax

HS6 +BS6

u−
2 +H6

qmax−−−qmax−−− ∅
u+
2 (0) = 16 nM

u−
2 (10000) = 32 nM

Cmax = 1 µM
qi = 4× 103/M/s, i ∈ { 1, 2, 3}

qmax = 106/M/s

Linear Model
Ideal Chemical
Realization DNA Implementaiton

(a)

(b)

u1(t) =






4× 10−9 t ∈ [0, 5000)
−4× 10−9 t ∈ [5000, 10000)
4× 10−9 t ∈ [10000, 15000)

−4× 10−9 t ∈ [15000, 20000)

Figure 4: Linear model, ideal chemical realization, and DNA implementation of summation using two

square wave inputs. (a) Two-input summation is approximated with seven ideal chemical reactions. The

DNA implementation is modeled with 16 reactions. The square wave inputs are modeled by an annihilation

reaction for each input signal, as well as instantaneous additions of chemical species at times t = 0, 5000,

1000, 15000. (b) Rate and concentration parameters for the simulated trajectories that appear in Figure 3c.

Initial concentration of fuel species are set to Cmax. All other initial concentrations are set to 0 nM.
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DNA Implementation
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5
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x±
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9
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x±
5
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y± x±

6 x±
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6 x±
5
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5
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u+(0) = 4 nM

u−(75000) = 8 nM
u+(150000) = u+(150000−) + 8 nM
u−(225000) = u−(225000−) + 8 nM

u+(0) = 8 nM
u−(75000) = 16 nM

u+(150000) = u+(150000−) + 16 nM
u−(225000) = u−(225000−) + 16 nM

kI = 1
2
q5Cmax

kP = q7/q 8

γ = 1
2
qiCmax, i ∈ { 1, 2, 3, 8, 9}
η = 1

2
qmaxCmax

P = (1 + δ2)
−1

Cmax = 1 µM
qi = 800/M/s, i ∈ { 1, 2, 3, 5, 7, 8, 9}

qmax = 106/M/s
δ2 = 2

x1(t) = u(t)− x5(t)

ẋ4(t) = kIx1(t)

x5(t) = kPx1 + x4

y(t) = x6(t) = Px5(t)

u(t) =






4× 10−9 t ∈ [0, 75000)
−4× 10−9 t ∈ [75000, 150000)
4× 10−9 t ∈ [150000, 225000)

−4× 10−9 t ∈ [225000, 300000)

Ideal Chemical RealizatonLinear System

(a)

(b)

Figure 5: PI Controller with production and degradation disturbances. (a) The PI controller is approximated

with 17 ideal chemical reactions, or 19 reactions including the chemical disturbance. The DNA implemen-

tation is modeled with 30 reactions, or 33 reactions including the chemical disturbance. The square wave

input is modeled by an annihilation reaction and four instantaneous additions of chemical species u+ and u−

at times t = 0, 75000, 150000, 225000. (b) Rate and concentration parameters for the simulated trajectories

that appear in Figure 1c. Fuel species G±i , T±i , Li, Bi, LSi, and BSi, are set to Cmax. All other species

have initial concentration 0 nM.
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