
LYRA3 GM

A multifunctional Tool for Nanotechnology

www.tescan.com

LYRA3 GM

A multifunctional Tool for Nanotechnology

Recent advancements in nanotechnology have lead to a growing need for a powerful "multi-functional nanotechnology tool" capable of nano-manipulation, nano-structuring (i.e. surface modification), nanoimaging and nano-analysis in one single instrument. In most lab environments multiple instruments are required to provide complementary analytical information. Access to one single instrument can provide a user with several benefits.

The newest generation FIB-SEM Nanotechnology workstation from TESCAN, the LYRA GM, delivers state of the art integration of a best in class Focused Ion Beam column and Field Emission Scanning Electron Microscope, while integrating an unprecedented range of nano-structuring, imaging, and nano-analytical tools. The integration of so many complementary analytical tools will allow researchers to characterize complex samples and solve analytical problems rapidly.

Analytical Flexibility

The LYRA GM can integrate a variety of nano-analytic techniques. A newly designed chamber, with more than 20 ports, the LYRA GM Nanotechnology workstation is the first in its class to fully realize the integration of a "Time of Flight" secondary ion mass spectrometer and in situ "SPM/AFM", making the LYRA GM one of the most versatile Nano-manipulation and characterization tools in the world. The following analytical applications can be fully realized in one single instrument

- SPM/AFM (Scanning Probe Microscope- Atomic Force Microscope)
- TOF (Time of Flight SIMS)
- EBSD (Electron Backscattered Scanning Diffraction)
- WDX (Wavelength Dispersive X-Ray Spectrometry)
- EDX (Energy Dispersive X-Ray Spectrometry)
- CL (Cathodoluminescence)
- EBIC (Electron Beam Induced Current)

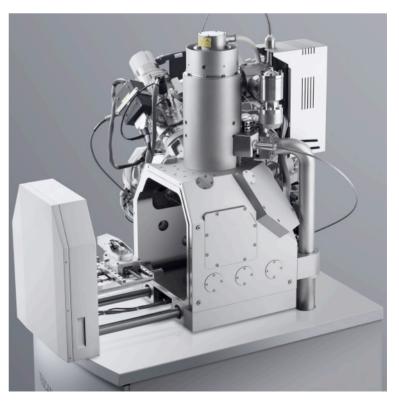
Benefits for users

Users are provided with several benefits accessing to one single instrument like:

- Multiple analytical techniques can be performed simultaneously from the same point of interest while milling through a sample with a Focused Ion Beam.
- Complementary information from several techniques can be realized on one single platform, enabling researchers to analyze nano-structures just after preparation or even during production.
- Critical in-situ measurements, in the same workstation, will benefit experiments where the sample cannot be exposed and whereby contamination and oxidation is not an option
- One integrated instrument is efficient compared to two or

more separate pieces of equipment (calculating e.g. the cost of ownership of multiple systems, throughput to providing results and surface cleanliness, taking into consideration transportation of samples between multiple instruments).

FESEM-FIB + SPM/AFM


The combination of Scanning Probe Microscopy (SPM/AFM) and Scanning Electron/Focused Ion Beam Microscopy (SEM/FIB) is the perfect complement of imaging speed and resolution from millimeter field of views down to the atomic scale.

The CurlewTM in situ SPM/AFM developed by SPECS (G) provides the possibility of analysis, probing, and manipulation of the same

sample feature by SPM and SEM/ FIB techniques without the need for time-consuming feature back-tracing. In addition it adds sub-nanometer surface sensitivity resolution and the ability to image insulating surfaces to SEM and FIB systems. The many electron-/ion matter interaction signals providing spetroscopic

and crystallographic surface information can be superimposed with SPM topography data. The Curlew[™] in situ SPM gives new perspectives with respect to surface analysis, probing and manipulation at the nanometer scale.

Complementary Techniques: FESEM-FIB + TOF

A unique combination of TOF-SIMS with FIB and SEM was implemented for the first time. For this purpose, an orthogonal TOF analyzer was developed by Tofwerk Company (CH) enabling ion mass spectrometry of high sensitivity together with continual FIB etching, resulting in a 3D map of mass distribution within the sample. A variety of other techniques allow a 3D tomography approach based on sequential FIB slicing followed by analysis e.g. by EBSD, CL, EBIC and others and subsequent data-processing to create 3D objects with analytical information.

Highlights

- Automatic set up of the coincidence point of the electron and ion beams
- The Draw Beam Software gives an end user access to the most advanced patterning and 3D characterization capabilities like powerful multilayer pattern editing tool, corrections of proximity effect, live imaging of the milling process, etc.
- Sophisticated software for SEM/FIB/GIS control, image acquisition, archiving, processing and analysis.
- The TESCAN unique Wide Field Optics[™] design provides necessary field of view for critical applications such as TEM sample preparation.

Software Tools

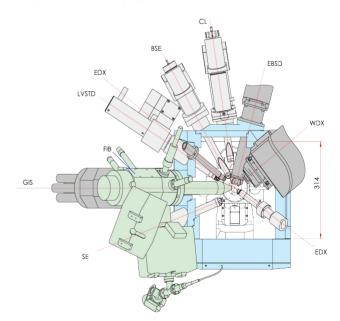
Image Processing and Operations Measurement Object Area Hardness Tolerance Multi-Image Calibrator Switch-Off Timer 3D Scanning Positioner Scriptor Live Video Particles Basic Particles Basic Particles Advanced Image Snapper DrawBeam Basic DrawBeam Advanced 3D Tomography Sample Observer EasyEDX Integration Software 3D Metrology (MeX)*	
•	Õ
3D Metrology (MeX)*	Õ
Input Director	Õ
	0.111

ullet standard, \circ option, "third-party dedicated software by Alicona Imaging GmbH

GM Chamber

Internal Size	340 mm (width) x 310 mm (depth)
Door width	340 mm (width) x 320 mm (height)
Number of ports	20 +
Chamber suspension	Integrated active vibration isolation system

Detectors	GMH	GMU
SE-ET type detector Retractable BSE detector Motorized R-BSE detector LVSTD - Low Vacuum Secondary TESCAN	• • •	
Detector TE detector CL detector SITD - Secondary Ion TESCAN Detector EBIC EDX* WDX* EBSD*		000000000000000000000000000000000000000
 third-party - products; - not available Accessories 		
Probe current measurement Touch alarm Chamber view camera Peltier cooling stage		•


 Chamber view camera

 Peltier cooling stage
 O
 Beam blanker SEM
 O
 Control Panel
 O
 Load Lock
 O
 Water vapor inlet
 Standard, o option, - not available

Other Options

Gas Injection System for 5 gases* Gas Injection System for 1 gas* Decontaminator	0	0
TOF Mass Spectrometer* AFM/STM*	000	000

option, - not available, *third-party products

Specimen Stage at GM Chamber

Туре	compucentric
Movements	5-axis fully motorized X = 130 mm, Y = 130 mm, Z= 100 mm Rotation = 360° continuous Tilt = -30° to + 90°
Specimen height	maximum 145 mm

LYRA3 **Electron Optics**

GMH

GMU

Electron Optics	Givin	GMU		
Resolution				
In high-vacuum mode SE	1.2 nm at 30 kV 2.5 nm at 3 kV	1.2 nm at 30 kV 2.5 nm at 3 kV		
In Iow-vacuum mode LVSTD	1	1.5 nm at 30 kV 3 nm at 3 kV		
In high-/low-vacuum mode BSE	2 nm at 30 kV	2 nm at 30 kV		
Electron optics working modes High-vacuum mode Low-vacuum mode	Resolution, Depth, Field, Wide Field, Channelling -	Resolution, Depth, Field, Wide Field, Channelling Resolution, Depth		
Magnification	Continuous from 2x to 1,000,000x	Continuous from 2x to 1,000,000x		
Maximum field of view	67 mm	67 mm in high-vac mode 12 mm in low-vac mode		
Accelerating voltage	200 V to 30 kV			
Electron Gun	High Brightness Schottky Emitter	High Brightness Schottky Emitter		
Probe current	2pA to 100 nA			
lon Optics				
lon column	Canion / Cobra / ExB mas filtered Canion C31X	Canion / Cobra / ExB mas filtered Canion C31X		
Resolution	< 5 nm at 30 kV / < 2.5 nm at 30 kV (at SEM-FIB coincidence point)			
Magnification	Minimum 150x at coincidence point and 10 kV (corresponding to 1 mm view field), maximum 1,000,000x			
Accelerating Voltage	0.5 kV to 30 kV			
lon gun	Ga Liquid Metal Ion Source	Ga Liquid Metal Ion Source		
Probe current	2pA to 40 nA			
SEM-FIB Coincidence at	WD 9 mm for SEM - WD 12 mm for FIB			
SEM-FIB angle	55°			
Vacuum System				
System pressure: Chamber - High-vacuum mode Chamber - Low-vacuum mode Electron Gun SEM Column FIB Gun	< 9x10 ⁻³ Pa* - < 3x10 ⁻⁷ Pa < 9x10 ⁻³ Pa* < 5x10 ⁻⁶ Pa * pressure <5x10 ⁻⁴ Pa reachable	< 9x10 ⁻³ Pa* 7-150 Pa < 3x10 ⁻⁷ Pa < 9x10 ⁻³ Pa* < 5x10 ⁻⁶ Pa * pressure <5x10 ⁻⁴ Pa reachable		
Microscope control	All microscope functions are PC-controlled using trackball, mouse and keyboard via control software using the Windows [™] platform.			
Scanning speed	From 20 ns to 10 ms per pixel adjustable in steps or co	From 20 ns to 10 ms per pixel adjustable in steps or continuously		
Scanning features	Focus Window, Dynamic focus, Point & Line scan, Image rotation, Image shift, Tilt compensation, 3D Beam, Live Stereoscopic Imaging (SEM), Other scanning shapes available through DrawBeam Software			
Image size	Up to 8,192 x 8,192 pixels in 16-bit quality, size is adjustable separately for live images (in 3 steps) and for saved images (in 10 steps), for square and rectangular 4:3 or 2:1 aspect ratios.			
Automatic procedures	In-Flight Beam Tracing™ beam optimization, Spot Size and Beam Current Continual, WD (focus) & Stigmator, Contrast & Brightness, Scanning Speed (according to Signal- Noise Ratio), Gun On, Gun Off , Gun Centering, Column Centering, Vacuum Control, Compensation for kV, Look Up Table, Auto-diagnostics			
Remote control	Via TCP/IP			

Wide field optics™, In-Flight Beam tracing™ and EasySEM™ are trademarks of TESCAN, a.s. Windows[™] is a trademark of the Microsoft Corporation. We are constantly improving the performance of our products, so all specifications and external designs of instruments are subject to change without notice.

TESCAN, a.s. ; Libušina třída 21; 623 00 Brno, Czech Republic, EU Tel. +420 547 130 411; fax +420 547 130 415; e-mail: info@tescan.cz; www.tescan.com