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ABSTRACT: Biologically inspired computing devices and architectures are
expected to overcome the limitations of conventional technologies in terms of
solving computationally demanding problems, adapting to complex environments,
reducing energy consumption, and so on. We previously demonstrated that a
primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex
spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can
be used to search for a solution to a very hard combinatorial optimization problem.
We successfully extracted the essential spatiotemporal dynamics by which the
amoeba solves the problem. This amoeba-inspired computing paradigm can be
implemented by various physical systems that exhibit suitable spatiotemporal
dynamics resembling the amoeba’s problem-solving process. In this Article, we
demonstrate that photoexcitation transfer phenomena in certain quantum
nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used
to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean
formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and
bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to
become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired
computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for
developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.

■ INTRODUCTION
Biological systems can be regarded as powerful computers in
which massive numbers of elements such as biopolymers,
proteins, and cells interact with each other and process vast
amounts of environmental information in a self-organized
manner.1 For example, chains of amino acids promptly solve
the protein folding problem, which is believed to be impossible
for conventional digital computers to solve in a practical
polynomial time.2 For such an intractable problem, the number
of all solution candidates, which should be examined
thoroughly, grows exponentially as a function of the problem
size and reaches an astronomical number, causing a
combinatorial explosion.3 What could be the source of the
tremendous computational powers of biological systems? We
believe that a key would be interactions among the elements.1

More specifically, the interactions, which involve dynamic

instabilities such as oscillations and fluctuations and physical
constraints such as conservation laws of several resources,
would generate complex spatiotemporal dynamics that could
explore a state space broadly and efficiently. Learning how
interacting biological elements perform powerful computations
will provide insightful role models for promoting nano-
architectonics, which aims to exploit novel functionalities
using interacting nanoscale elements.
Natural computing is an emerging research field that uses the

knowledge obtained from various natural phenomena, includ-
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ing biological processes, to complement and overcome the
limitations of conventional digital computers in solving
computationally demanding problems in a decentralized
manner, making optimal decisions adaptively in uncertain
environments, reducing energy consumption, and so on.4,5

Several algorithms for solving computationally demanding
problems have been abstracted from biological processes such
as information processing in neural networks,6 evolutionary
processes in genetic systems,7 optimal path finding by ants,8

and optimal solution search by swarms of insects.9 In this
context, a single-celled amoeboid organism, a plasmodium of
the true slime mold Physarum polycephalum (Figure 1a), has

been actively investigated owing to its intriguing computational
capabilities. For example, this amoeba, despite the absence of a
central nervous system, connects the optimal routes among
food sources by changing its amorphous shape.10,11 These
computational capabilities were expected to emerge from its
complex spatiotemporal behavior in which the volume of each
part oscillates with a period of approximately 1 to 2 min in a
fluctuating manner.12,13

Aono et al. devised an amoeba-based computer (ABC)14,15

that incorporates an amoeba to solve various optimization
problems. In the ABC, we harnessed complex spatiotemporal
oscillatory dynamics of the amoeba in a multilane chip (Figure

1a) by introducing unique optical feedback control (Figure 1b),
which we call bounceback control. Under normal conditions,
the amoeba supplies its intracellular resource (protoplasm) to
its pseudopod-like branches so that they elongate by repeating
several cycles of oscillations while conserving the total volume
of the entire body. However, the branches retreat when
stimulated by visible light as the resource bounces back from
the illuminated region owing to the photoavoidance response.
Sharing the constant volume of the resource, these branches
interact with each other by transmitting information on their
stimulated experiences through exchanging the resource to
make an optimal decision on resource allocation. In the ABC,
we updated the light stimulation of all of the lanes at 6 s
intervals, depending on the change in the amoeba’s shape.
Under this dynamic environment, the organism tried to deform
into an optimal shape, maximizing the body area for maximal
nutrient absorption while minimizing the risk of being exposed
to light stimuli.
We designed a rule for updating the light stimulation based

on certain recurrent neural network dynamics so that the
amoeba could search for a solution to the traveling salesman
problem (TSP).16 The TSP, one of the best-studied intractable
problems, is stated as follows: given a map of n cities that
defines the travel distance from any city to any other city
(Figure 1c), find the shortest route for visiting each city exactly
once and returning to the starting city. In the ABC, the
challenge for the amoeba to find the shortest route is that its
branches should not enter frequently illuminated lanes and
should elongate into the optimal combination of the least
frequently illuminated lanes. Note that the optimal combina-
tion cannot be found if this organism always obeys the optical
feedback control rule. To compare the route lengths of solution
candidates, it is necessary for the amoeba to make “errors” at
appropriate frequencies. That is, to explore the state space
broadly, sometimes the organism needs to misallocate the
resource to its branches, contrary to their normal photo-
avoidance response, so that the branches expand even when
illuminated and shrink even when unilluminated. In reality,
owing to the intrinsic spatiotemporal oscillatory dynamics, each
branch could vary its responses to light stimuli suitably
depending on its oscillation phase, so the amoeba could find
a high-quality solution through trial and error, as shown in
Figure 1d.17

We evaluated the computational performance of the ABC by
increasing the problem size n from 4 to 8 to explore how the
explosive growth in the number of solutions [(n − 1)!/2 = 3,
12, 60, 360, and 2520] affects the performance.18 Interestingly,
the ABC found a high-quality solution (a shorter route) with a
high probability and robustly maintained the high quality
independently of n. Moreover, the search time required to find
the solution grew almost linearly as a function of n, despite the
explosive expansion of the state space. These results suggested
that the ABC has an economical search ability to find a
satisfactory high-quality solution at a low exploration cost,
including a short search time. This might be a strategy of this
organism to survive adaptively in uncertain environments.
Extracting the essential factors from the amoeba’s economical

search process, Aono et al. formulated an amoeba-inspired
computing paradigm as a hybrid process of two spatiotemporal
dynamics that are counterparts of the shape-changing behavior
of the amoeba and the illumination-updating rule of the optical
feedback control.19 The former dynamics, which allocate the
resource so that it is supplied to nonstimulated units and is

Figure 1. Amoeba-based computing. (a) Amoeboid organism P.
polycephalum and Au-coated 64-lane chip resting on a nutrient-rich
agar plate. The amoeba remains inside the chip because of its
attraction to nutrients in the plate and its aversion to metal. (b)
Experimental setup. The image of the amoeba recorded by a video
camera was processed using a PC to update the image pattern for
illumination with a projector. (c) Example of the eight-city map in the
traveling salesman problem. The distance between each pair of cities is
indicated on the corresponding edge. There uniquely exist shortest
and longest routes having lengths of 100 and 200, respectively, where
the average route length for all possible 2520 solutions was 149.1. (d)
High-quality solution found by the amoeba-based computer. The
amoeba’s shape represents the route CHDEGFABC with a length of
128 (the red unicursal line in c), which is evaluated as being in the top
10% of solutions with regard to quality (shortness). Each lane of the
chip is labeled Vk, which indicates the city name V and its visiting
order k. Red and yellow pixels indicate increasing and decreasing
thicknesses, respectively. Blue trapezoids indicate illuminated regions.
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bounced back from stimulated units, must generate appropriate
fluctuations in the stimulus response to make errors at optimal
frequencies. In addition, the latter dynamics, which we call the
bounceback control dynamics, should update the stimulations
depending on the former states and should adequately apply
repulsive stimulation to unfavorable units from which the
resource should be bounced back.
These observations imply that, to develop novel computing

devices that operate much faster than the amoeba, it would be
possible to use the stimulus-responsive spatiotemporal
dynamics of various physical systems in which some resource
of the system is transferred to its subsystems in a fluctuating
manner.
In fact, Naruse et al. showed that the spatiotemporal

dynamics of photoexcitation transfer between quantum
mechanical electronic states (excitonic states), which are
implemented in semiconductor nanostructures and are
mediated by optical near-field interactions, could be used to
solve constraint satisfaction problems.20,21 Optical near-field
interactions occur at scales far below the wavelength of light
and enable photoexcitation transfer to dipole-forbidden energy
levels, which cannot be realized by conventional optical far
fields. A useful theoretical treatment of the near-field optical
excitation transfer process has been established on the basis of
the dressed-photon model,22 and the process has been
experimentally demonstrated in quantum dot (QD) systems
based on various semiconductors such as InGaAs,23 ZnO,24 and
CdSe.25 Kawazoe et al. demonstrated room-temperature
photoexcitation transfer using two layers of 2D-ordered InGaAs
QDs.26 Akahane et al. fabricated 60 highly stacked layers of
InAs QDs and produced a system with a total QD density of
4.73 × 1012/cm2.27 Moreover, Naruse et al. showed that the
minimum energy dissipation in photoexcitation transfer has
been shown to be 104 less than that required for a bit flip in a
CMOS logic gate in conventional electrically wired devices.28

These facts suggest that, by exploiting these photoexcitation
transfer dynamics, our amoeba-inspired computing paradigm
can be implemented on highly integrated low-energy-use
quantum nanostructures.
Our paradigm is applied to solving the satisfiability problem

(SAT), which is one of the most important intractable
problems in computer science. In computational complexity
theory, the complexity class NP (nondeterministic polynomial
time) includes many difficult problems in which no polynomial
time algorithm has been found so far. That is, these difficult
problems often require an exponential time for conventionally
known algorithms to solve. SAT was the first problem shown to

be NP-complete, that is, the most difficult problem among
those that belong to the class NP.3 The NP completeness
implies that all NP problems, including thousands of practical
real-world problems, can be reduced to SAT. A powerful SAT
solver, therefore, has enormous versatility. In fact, it is applied
to a wide range of application problems such as software and
hardware design, planning, constraint optimization, automatic
inference, cryptography, and protein structure prediction.
In this Article, we first introduce the photoexcitation transfer

dynamics, review the satisfiability problem, and describe our
newly developed computing paradigm. Then, we compare the
performance of our paradigm with that of a well-known
algorithm. Finally, we discuss the origin of our paradigm’s high
performance and conclude the Article.

■ EXPERIMENTAL SECTION
Photoexcitation Transfer between Quantum Dots. We

assume two spherical QDs whose radii are rS and rL (>rS), which we
call a small QD (QDS) and a large QD (QDL), respectively, as shown
in Figure 2a. Under irradiation by input light, an exciton (electron−
hole pair) is generated in QDS. We consider photoexcitation transfer
phenomena between QDS and QDL (i.e., transitions of exciton to
states specified by (q1, q2), where q1 and q2 are the orbital angular
momentum quantum number and magnetic quantum number,
respectively). The energy eigenvalues of the states are given by

α
= + +

ℏ
=E E E

mr
q

2
( 1, 2, 3, ...)q q

q q
( , ) g ex

2
( , )

2

2 11 2

1 2

(1)

where Eg is the band gap energy of the bulk semiconductor, Eex is the
exciton binding energy in the bulk system, m is the effective mass of
the exciton, and α(q1,q2) are determined from the boundary conditions,

for example, α(q1,0) = q1π, α(1,1) = 4.49.
According to eq 1, there exists a resonance between the level with

quantum number (1, 0) in QDS, denoted by S in Figure 2a, and that
with quantum number (1, 1) in QDL, denoted by Lupper, if rL/rS =
4.49/π ≈ 1.43. These energy levels S and Lupper are in resonance with
each other and are connected by an interdot optical near-field
interaction, US,L, which is given by a Yukawa-type potential

ν μ
=

−
U

S L
S L

exp( dst( , ))
dst( , )S,L

(2)

where dst(S, L) denotes the distance between QDS and QDL and ν
and μ are constants.22,29 Note that, in typical light−matter interactions
via optical far fields, transitions to states specified by (q1, q2) = (1, 1)
are not allowed because this is a dipole-forbidden energy level.
However, in optical near-field interactions, because of the large spatial
inhomogeneity of the localized optical near fields at the surface of
nanoscale materials, Lupper is allowed to be populated by excitons,

Figure 2. Photoexcitation transfer between QDs. (a) Exciton in QDS is transferred to QDL, from which it subsequently radiates. (b) Exciton
population bounced back from QDL when the lower energy level, Llower, is filled with another exciton.
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violating the conventional optical selection rules.29 Therefore, the
exciton at level S in QDS could be transferred to level Lupper in QDL.
In QDL, because of the sublevel energy relaxation with a relaxation

constant ΓL, which is faster than the optical near-field interaction, the
exciton relaxes to the (1, 0) level, denoted by Llower, from where it
radiatively dissipates (Figure 2a). In addition, because the radiation
lifetime of QDs is inversely proportional to their volume,30 finally we
find “unidirectional” exciton transfer from QDS to QDL. We consider
that the exciton is transferred from QDS to QDL when we observe
light emission from QDL due to the radiation of optical energy. The
radiation from Llower is represented by the relaxation constant γL.
The unidirectionality of exciton transfer originates from the energy

dissipation occurring in QDL. Therefore, by disturbing the sublevel
energy relaxation in QDL, we can block exciton transfer to QDL. In
fact, when the lower energy level Llower of QDL is filled with another
exciton, the exciton in QDS cannot move to QDL. The blocked exciton
will bounce back and forth between QDL and QDS (optical nutation)
and will finally dissipate from QDS according to the relaxation constant
γS, as shown schematically in Figure 2b. We can fill the state Llower of
QDL by light stimulation, which is referred to as state filling. Like the
branch of the amoeba that shrinks when illuminated, the probability of
exciton transfer to QDL is reduced when it is state-filled, as described
in the next section.
Spatiotemporal Dynamics of Photoexcitation Transfer. To

implement the amoeba-inspired computing paradigm, we design a
system where a QDS is surrounded by a number of QDL’s, as shown in
Figure 3a. For simplicity, we consider four QDL’s (QDA, QDB, QDC,
and QDD), each of which has the same upper level, lower level,
sublevel relaxation constant, and radiation constant Lupper, Llower, ΓL,
and γL, respectively.
We describe the basic properties of the spatiotemporal dynamics of

exciton transfer in this system. We assume that the system initially has
one exciton in S. For each QDL, through the interdot interaction US,L,
the exciton in S could be transferred to Lupper. Accordingly, we can
derive quantum master equations in the density matrix formalism.29,31

The interaction Hamiltonian is given by

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

H

U U U U

U

U

U

U

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

S A S B S C S D

S A

S B

S C

S D

int

, , , ,

,

,

,

, (3)

Although interactions between the QDL’s occur, for simplicity they are
not considered here. The relaxation regarding the above-mentioned
states is described by NΓ = diag(γS, ΓA, ΓB, ΓC, ΓD). Then the Liouville
equation for the system is

ρ ρ ρ ρ= −
ℏ

− −Γ Γ
t

t
H t N t t N

d ( )
d

i
[ , ( )] ( ) ( )int (4)

where ρ(t) is the density matrix with respect to the five energy levels
and ℏ is Planck’s constant divided by 2π. Similarly, we can derive
ordinary differential equations with respect to Llower, which is
populated by the relaxations from Lupper with constants ΓL, which
decay radiatively with relaxation constants γL.
In the numerical calculation, we assume US,L

−1 = 100 ps, ΓL
−1 = 1

ps, γL
−1 = 1 ns, and γL

−1 = (rL/rS)
3 × γL

−1 ≈ 2.92 ns as a typical
parameter set. For instance, in experimental demonstrations based on
a CdSe/ZnS core−shell QD,32 the measured radiation lifetime of a
CdSe/ZnS QD with a diameter of 2.8 nm (QDL) was 2.1 ns, which is
close to the radiation lifetimes γL

−1 and γS
−1. In addition, the

interaction time between QDS and QDL was estimated to be 135 ps,32

which is also close to the above interdot interaction time US,L
−1.

When the above Liouville equation is solved numerically (eq 4), the
time evolution of the populations of the lower energy levels of the
QDL’s, which are relevant to occurrences of radiation, can be
calculated. Figure 3b indicates that the system uniformly grows the

populations of Alower, Blower, Clower, and Dlower while reducing the
population of S and finally reaches equilibrium. Figure 3c shows the
case where QDA and QDC are subjected to state filling by light
stimulation. A way of describing such a state-filling effect in eq 4 is to
induce a significant increase in the sublevel relaxation lifetime of the
state-filled QDA and QDC; we assume that the lifetime increased to
ΓA

−1 = ΓC
−1 = 105 ps. Such a formation has been validated in the

literature.21 Because of these changes in the parameters, the exciton is
more likely be transferred to QDB or QDD than to QDA or QDC, as
shown in Figure 3c.

Radiation Probability. We can obtain the probability pL that the
exciton in QDS is transferred to QDL, from which it subsequently
radiates by numerically integrating the time evolution of the
population of Llower over 6000 ps and dividing it by a certain gain
constant g, as shown in Figure 3b,c. In our numerical calculation, we
assume that radiation occurs in QDL if a uniformly generated random
number in [0.0, 1.0] is less than the value of pL. Therefore, pL
represents the probability that radiation from QDL is observed within
6000 ps. Thus, more than one radiation event can occur in a number
of QDL’s. This verifies that pA + pB + pC + pD ≠ 1. The radiation

Figure 3. Spatiotemporal dynamics of photoexcitation transfer in the
system with QDS surrounded by four large QDs (QDA, QDB, QDC,
and QDD). (a, c) When QDA and QDC are state-filled, the exciton is
likely to be transferred to either QDB or QDD, from which it radiates.
Each of radiation probabilities (right panel) is calculated as a time
integration of each corresponding time evolution of populations (left
panel) divided by a gain constant g. (b) In the absence of state-filling
stimulation, radiation occurs in the four large dots with equal
probability.
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probabilities when QDL is state-filled and non-state-filled are denoted
by pL

+ and pL
−, respectively.

We briefly discuss the similarities between the photoexcitation
transfer dynamics and the shape-changing behavior of the amoeba. We
consider that the amoeba’s intracellular resource supply to its branch
can be compared to exciton transfer to QDL (i.e., radiation in QDL).
As the amoeba’s intracellular resource is bounced back from
illuminated branches, the exciton population is bounced back from
state-filled QDL’s. However, as mentioned previously, to explore the
state space broadly, the amoeba had to make errors at appropriate
frequencies; the branch varied its normal photoavoidance response
depending on its intrinsic oscillation phase so that it could expand
even when illuminated and shrink even when unilluminated. In the
photoexcitation transfer dynamics, these error mechanisms are
implemented by the occurrence and nonoccurrence of radiation in
state-filled and non-state-filled QDL’s with probabilities of pL

+ and 1 −
pL

−, respectively.
As shown in the right panels of Figure 3b,c, pA and pC decreased

owing to state-filling stimulation, whereas pB
− and pD

− increased as if
they tried to compensate for the decrements in pA and pC. That is, the
radiation probability of each QDL varies in response to the current
state-filling stimulation applied to other distant QDL’s. In other words,
the stimulus response of each QDL is not determined locally. This
nonlocal property is shown more clearly in Figure 4a,b. The radiation

probabilities of non-state-filled and state-filled QDL’s, pL
− and pL

+,
increased nonlinearly as a function of the number of all state-filled
QDL’s. In case of the amoeba, the previously mentioned conservation
law in the total resource volume entailed a nonlocal correlation among
the amoeba’s branches (i.e., a volume increment in one branch is
immediately compensated for by a volume decrement(s) in the other
branch(es)). This nonlocal correlation was shown to be useful for
efficient and adaptive decision making.33

Satisfiability Problem. SAT is the problem of determining if a
given Boolean formula ϕ of N variables xi ∈ {0 (false), 1 (true)} (i ∈ I
= {1, 2,..., N}) is satisfiable (i.e., there exists at least one assignment of
truth values (0 or 1) to the variables that makes the formula true (ϕ =
1)). Roughly speaking, ϕ represents a logical proposition, and the
existence of a satisfying assignment verifies that the proposition is self-
consistent. For example, a formula ϕex = (x1 ∨ ¬x2)∧(¬x2 ∨ x3 ∨ ¬x4)
∧ (x1 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ ¬x4) ∨ (¬x1 ∨ x4) has a satisfying
assignment (x1, x2, x3, x4) = (1, 1, 1, 1), which is a uniquely existing
solution. Even if ϕ has more than one solution, this instance can be
solved when at least one solution is found. However, to prove
unsatisfiability, the only sure method known to be applicable to
arbitrary formulas is to check the inconsistency of all possible
assignments, the number of which grows exponentially as 2N.
SAT is called 3-SAT when ϕ consists of M clauses that are

connected by ∧ (and), and each clause connects at most three literals
by ∨ (or) as (xj* ∨ xk* ∨ xl*), where each literal xi* can be either xi or
¬xi. Any SAT instance can be transformed to a 3-SAT instance, and 3-

SAT is also NP-complete. In this study, we design our computing
paradigm for application to solving 3-SAT.

Amoeba-Inspired Nanoarchitectonic Computer. As shown in
Figure 5, to solve an N-variable 3-SAT, we use 2N large QDs (QDi,v’s)

that receive optical energy from QDS, where the label (i,v) indicates
that value v ∈ {0, 1} is assigned to variable xi (i ∈ I = {1, 2,..., N}) (i.e.,
xi = v). When the exciton in QDS is transferred to QDi,v and
subsequently radiation is observed at a discrete time step t, we write
this status as Ri,v(t) = 1, whereas Ri,v(t) = 0 indicates that no radiation
occurs. When state-filling stimulation is applied to QDi,v, we denote
this status as Fi,v(t) = 1, whereas Fi,v(t) = 0 denotes no state filling.
Thus, radiation Ri,v(t) = 1 occurs with a probability that depends on
the state-filling stimulation Fi,v(t) as follows:

=

=

=

+

−

⎧
⎨
⎪⎪

⎩
⎪⎪

R t

p t F t

p t F t( )

1 (with probability ( ) if ( ) 1)
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0 (otherwise)

i v

i v i v

i v i v,

, ,

, ,

(5)

Figure 4 shows the dependence of the radiation probabilities of non-
state-filled and state-filled QDi,v’s, pi,v

−(t), and pi,v
+(t) on the number of

all state-filled QDj,u’s (i.e., Σj,uFj,u(t)).
Each radiation event Ri,v is accumulated by a newly introduced

variable Xi,v ∈ {−1, 0, 1} as follows:

+ =

+ = <

− = > −
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Equation 6 can be implemented either physically or digitally; the
values of Xi,v can be stored either by some additional QDs or by some
external control unit, as illustrated in Figures 5 and 1b, respectively. At
each step t, the system transforms a configuration X = (X1,0, X1,1, X2,0,
X2,1,..., XN,0, XN,1) into an assignment x = (x1, x2,..., xN) as follows

=

= ≤

≤ =

−

⎧
⎨
⎪⎪

⎩
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x t

X t X t

X t X t

x t
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0 (if ( ) 1 and ( ) 0)

1 (if ( ) 0 and ( ) 1)

( 1) (otherwise)

i

i i

i i

i

,0 ,1

,0 ,1

(7)

where xi(0) = undefined for all i.

Figure 4. Dependence of the radiation probability on the number of
all state-filled QDj,u’s, f = Σj,uFj,u(t), in the system consisting of 150
QDj,u’s for solving a 75-variable SAT. (a) Radiation probability pi,v

− in
non-state-filled QDi,v. (b) Radiation probability pi,v

+ in state-filled
QDi,v. Each probability, which is obtained as a time integration of
population evolution divided by g, grows nonlinearly as a function of f.
We set g such that it gives pi,v

− = pi,v
+ = 0.5 when f = 0.

Figure 5. Data-flow diagram of the amoeba-inspired nanoarchitectonic
computer.
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Bounceback Control Dynamics. The state-filling stimulations Fi,v
are updated synchronously according to the following dynamics

+

=
∃ ∈ ∀ ∈ =

∈

⎧
⎨⎪⎪

⎩
⎪⎪

F t

P Q B j u P X t
i v Q

( 1)

1 (if ( , ) ( ( , ) ( ( ) 1)
and ( , ) ))

0 (otherwise)

i v

j u

,

,

(8)

where B is a set of bounceback rules to be explained in this section.
Each element (P, Q) in B implies the following statement: if all of the
Xj,u’s specified by P are positive at t, then stimulate all QDi,v’s specified
by Q to inhibit their radiation at t + 1. Stated simply, if xj = u, then xi
should not be v.
To see the meaning of the bounceback rules, let us consider the

example formula ϕex, which is shown in Figure 6a. To satisfy this

formula for ϕex = 1, we should make every clause true because all
clauses are connected by ∧. Suppose, for example, that the system tried
to assign x1 = 0 (i.e., X1,0(t) = 1), as indicated by the red broken circle
in Figure 6b. Now let us focus on the first clause (x1 ∨ ¬x2) in ϕex. To
make this clause true, if x1 = 0 then x2 should not be 1. Therefore, we
apply state-filling stimulation F2,1(t + 1) = 1 to inhibit the radiation
R2,1(t + 1) of QD2,1, as indicated by the blue broken circle. However,
because x3 in the third clause (x1 ∨ x3) should not be 0, we apply F3,0(t
+ 1) = 1 (the blue dotted circle). In addition, we apply F1,1(t + 1) = 1
(the blue solid circle) because if x1 = 0 then obviously x1 should not be
1. Likewise, the set of all bounceback rules B is determined by
scanning all clauses in ϕex, as shown in Table 1.
We formally define the set B = INTRA∪INTER∪CONTRA in what

follows. INTRA forbids each variable i to take two values 0 and 1
simultaneously:

= − | ∈ ∧ ∈i v i v i I vINTRA {({( , )}, {( , 1 )}) {0, 1}} (9)

Each clause c = xj*∨xk*∨xl* in ϕ is represented as a set C = {j*, k*, l*}
with its literals xi* mapped to i* = i if xi* = xi and to −i otherwise, and
the formula ϕ is expressed equivalently by a set Φ, which includes all
of the clauses as their elements. The example formula ϕex is
transformed to Φex = {{1, −2}, {−2, 3, −4}, {1, 3}, {2, −3}, {3,
−4}, {−1, 4}}. For each C in Φ and each variable i in C, INTER blocks
the radiation [either Ri,0(t + 1) or Ri,1(t + 1)] that makes c false

= | ∈ ∧ ∈ Φ ∪

| − ∈ ∧ ∈ Φ

P i i C C P i

i C C

INTER {( , {( , 0)}) } {( , {( , 1)})

} (10)

where P = {(j, 0)| j ∈ C ∧ j ≠ i } ∪ {(j, 1) |−j ∈ C ∧ j ≠ i }. Some rules
in INTER may imply that neither 0 nor 1 can be assigned to a variable.
To avoid this contradiction, for each variable i, we build CONTRA by
checking all of the relevant rules in INTER:

= ∪ ′ ∪ ′ | ∈ ∧

∈ ∧ ′ ∈

P P P P i I P i

P i

CONTRA {( , ) ( , {( , 0)})

INTER ( , {( , 1)}) INTER} (11)

Before the computation, B is obtained in a polynomial time of O(NM)
by generating all of the bounceback rules in INTRA, INTER, and
CONTRA according to the above procedures.

Note that the system can be stabilized if the following condition
holds for all (i, v): if Xi,v(t) = 1 then Fi,v(t) = 0 or if Xi,v(t) ≤ 0 then
Fi,v(t) = 1. When this condition is not met, the system cannot be
stabilized. Indeed, if Xi,v(t) = 1 and Fi,v(t) = 1, then radiation in QDi,v is
likely to be inhibited as Ri,v(t + 1) = 0; consequently, Xi,v(t + 2) = 0.
However, if Xi,v(t) ≤ 0 and Fi,v(t) = 0, then radiation Ri,v(t + 1) = 1 is
likely to be promoted to facilitate Xi,v(t + 2) = 1. These changes in the
sign of Xi,v make the system unstable. We designed the bounceback
rules so that only satisfying assignments can be stabilized. This implies

Figure 6. Bounceback control dynamics. (a) All bounceback rules in
INTER for ϕex. (b) Bounceback control applies state-filling
stimulations F1,1(t + 1) = F2,1(t + 1) = F3,0(t + 1) = 1 if X1,0(t) = 1.
(c) Configuration X = (0, 1, 0, 1, 0, 1, 0, 1), which represents a
solution (x1, x2, x3, x4) = (1, 1, 1, 1). (d) Simulated time evolution.
Red and blue dots indicate Xi,v(t) = 1 and Fi,v(t) = 1, respectively.

Table 1. All Bounceback Rules for ϕex

B P Q

INTRA {(1, 0)} {(1, 1)}
{(1, 1)} {(1, 0)}
{(2, 0)} {(2, 1)}
{(2, 1)} {(2, 0)}
{(3, 0)} {(3, 1)}
{(3, 1)} {(3, 0)}
{(4, 0)} {(4, 1)}
{(4, 1)} {(4, 0)}

INTER {(2, 1)} {(1, 0)}
{(1, 0)} {(2, 1)}

{(3, 0), (4, 1)} {(2, 1)}
{(2, 1), (4, 1)} {(3, 0)}
{(2, 1), (3, 0)} {(4, 1)}

{(3, 0)} {(1, 0)}
{(1, 0)} {(3, 0)}
{(3, 1)} {(2, 0)}
{(2, 0)} {(3, 1)}
{(4, 1)} {(3, 0)}
{(3, 0)} {(4, 1)}
{(4, 0)} {(1, 1)}
{(1, 1)} {(4, 0)}

CONTRA {(1, 1), (3, 0)} {(1, 1), (3, 0)}
{(1, 0), (2, 0)} {(1, 0), (2, 0)}
{(1, 0), (3, 1)} {(1, 0), (3, 1)}
{(2, 1), (4, 0)} {(2, 1), (4, 0)}
{(2, 0), (4, 1)} {(2, 0), (4, 1)}
{(3, 0), (4, 0)} {(3, 0), (4, 0)}

{(1, 1), (2, 1), (3, 0)} {(1, 1), (2, 1), (3, 0)}
{(2, 0), (2, 1), (4, 1)} {(2, 0), (2, 1), (4, 1)}
{(3, 0), (3, 1), (4, 1)} {(3, 0), (3, 1), (4, 1)}
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that if a configuration X represents a solution then X can be
maintained for the longest duration and thus occurs with the highest
frequency when the system evolves for a sufficiently large number of
iteration steps.
AmoebaSATnano and WalkSAT. Our numerical calculation

method for simulating the amoeba-inspired computing paradigm can
be used as an algorithm for solving SAT. We call this algorithm
AmoebaSATnano. We evaluate the performance of AmoebaSATnano
in comparison with that of the best-studied stochastic search algorithm
called WalkSAT, which finds a solution with a reasonably large
probability after a fairly small number of iterations.34

WalkSAT starts from a randomly chosen assignment x = (x1, x2,...,
xN). At each iteration, by checking whether each clause in ϕ is satisfied
by the current assignment x, WalkSAT randomly chooses one of the
unsatisfied clauses and satisfies it by flipping one of its variables chosen
at random (i.e., 0 → 1 and 1 → 0). This routine is iterated until x
satisfies ϕ or we run out of time. Schöning estimated the average
number of iterations that WalkSAT required to find a solution to a 3-
SAT as an exponential function of (4/3)

Npoly(N).34 WalkSAT is one
of the fastest algorithms.35

■ RESULTS

The computation of AmoebaSATnano starts at Xi,v(0) = Ri,v(0)
= Fi,v(0) = 0 for all (i, v), and the time evolution of the system
is simulated by updating eqs 5, 6, and 8 iteratively. Figure 6d
shows that the system successfully found the solution of the
example formula ϕex at t = 12, which is represented by the
configuration shown in Figure 6c. We can confirm that X = (0,
1, 0, 1, 0, 1, 0, 1), which represents the solution (x1, x2, x3, x4) =
(1, 1, 1, 1) that is observed most frequently after t = 12.
We compared the performance of AmoebaSATnano and

WalkSAT for benchmark SAT instances, which are provided to
the public by SATLIB online.36,37 We used a family of 3-SAT
instance distributions, Uniform Random-3-SAT, which was
obtained by randomly generating three-literal conjunctive
normal form formulas. The hardness of a 3-SAT has been
shown to be maximal when the ratio between the number of
variables N and the number of clauses M is set at the phase-
transition region around M/N = 4.26.38,39 We chose 100
instances each from each of the test sets uf75−325 and uf100−
430, which took satisfiable N = 75 − M = 325 and N = 100 −
M = 430 formulas from the most difficult regions,M/N ≈ 4.333
and M/N = 4.3, respectively.
For each instance, we conducted 500 trials consisting of

Monte Carlo simulations to obtain the average number of
iterations (time steps t) required to find a solution. Figure 7
shows that in almost all instances AmoebaSATnano found a
solution more quickly than WalkSAT. In particular, Amoeba-
SATnano outperformed WalkSAT more significantly as N
increased.

■ DISCUSSION AND CONCLUSIONS

We demonstrate that photoexcitation transfer phenomena in a
QDs system mediated by optical near-field interactions can be
used to solve SAT. Our amoeba-inspired computing paradigm
is fundamentally different from conventional optical computing
or optical signal processing, which are limited by the properties
of propagating light. Our paradigm also differs from the
quantum computing paradigm, which exploits a superposition
of all possible states to produce a correct solution. This is
because our paradigm exploits both coherent and dissipative
processes. In fact, optical-near-field-mediated photoexcitation
transfer is a coherent process, suggesting that an exciton could
be transferred to all possible destination QDL’s via a resonance

energy level, but such a coherent interaction produces a
unidirectional transfer by an energy dissipation process
occurring in QDL. A strength of our paradigm is that
photoexcitation transfer is 104 times more energy efficient
than conventional electrically wired bit-flip circuits.28

An important issue that we should address to implement our
paradigm experimentally is a means of introducing the
bounceback control dynamics; at each iteration, the control
dynamics should store the values of Xi,v(t) by detecting the
radiation values Ri,v(t), determine the state-filling stimulations
Fi,v(t + 1) according to the set of bounceback rules B, and apply
these stimulations to QDi,v’s, as shown in Figure 5. An external
approach would be to use an external control unit such as a
combination of a PC with a projector, as we did for the
amoeba-based computing (Figure 1b). However, the external
control unit may impose additional energy costs and may limit
the processing speed of our paradigm. However, an internal
approach could implement the control dynamics using
additional QDs without introducing the external control unit.
It may be possible to embed the counterpart of the external
control unit in the arrangement of QDs because the
bounceback rules are expressed by combining elementary
logical operations and these logical operations have already
been implemented experimentally using several QD systems.26

Because SAT is NP-complete, a powerful SAT solver is useful
for a broad spectrum of applications in artificial intelligence,
information security, and bioinformatics. We demonstrated
that, for benchmark 3-SAT instances chosen from the most
difficult region, our paradigm found a solution much faster than
did the conventionally known fastest algorithm. We believe that
the origin of the high performance of our paradigm will be
attributed to interactions among the QDs. At each iteration, the
conventional algorithm flips a single state without implement-
ing any interaction among the variables. In contrast, our
paradigm updates at most 2N states through a large number of
interactions among the QDs, which exchange information on
stimulated experiences via the bounceback control dynamics.
This difference in the number of interactions might produce a

Figure 7. Performance comparison between our AmoebaSATnano
(red) and the well-known WalkSAT (black) for benchmark 3-SAT
instances of N = 75 and 100. Each point indicates the number of
iterations required to find a solution for each instance, averaged over
500 trials. For each algorithm and each N, we evaluated 100 points
(instances) and ranked (sorted) all of the points from easiest to most
difficult (requiring the largest number of iterations). The results are
compared on a logarithmic scale, which implies that AmoebaSATnano
has a significant advantage over WalkSAT.
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huge difference in the computing power.1 This discussion
would be supported by the fact that our paradigm became more
advantageous as N increased.
Putting these facts together, this Article paves the way for

applying nanometer-scale optical near-field interactions to
develop novel low-energy-use highly versatile powerful
computers. We believe that our amoeba-inspired computing
paradigm presents a promising direction for nanoarchitectonics,
which harnesses novel functionalities in the interactions among
nanoscale elements.
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