
Routing under Constraints
Alexander Nadel

Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
Email: alexander.nadel@intel.com

Abstract—Routing is an essential stage in physical design,
where already placed components are connected by wires. Rout-
ing must satisfy various manufacturing requirements, referred to
as design rules. We formalize the problem of design-rule-aware
routing and introduce a solver, called DRouter, for the resulting
problem. Plain routing is often modeled as follows: given an
undirected weighted graph and a set of m disjoint nets (each
net being a set of vertices), a routing is a (minimal) forest of m
disjoint trees, where each tree spans a net. DRouter’s input
comprises a plain routing instance and a bit-vector formula,
whose variables include the edges of the graph as Boolean
variables (along with other variables). DRouter looks for a
satisfying assignment to F , such that the satisfied edges comprise
a routing. DRouter implements an A*-based router inside a SAT
solver. It overrides the solver’s decision and restart strategies
and enhances its learning with routing-aware algorithms. We
demonstrate that, on a set of crafted routing instances, DRouter
has substantially better capacity than either plain reduction to
bit-vector reasoning or Monosat, a solver that is able to reason
about SAT and graph predicates. We show that DRouter can
route large clips from Intel designs while obeying up to millions
of applications of the design rules–a task two industrial routers
failed to accomplish.

I. INTRODUCTION

Wire routing (or, simply, routing) is an essential stage in
the process of the physical design of integrated circuits [17]
and printed circuit boards [1]. A router routes (that is, con-
nects) components laid out during the placement stage. Design
rules specify restrictions on the routing process originating in
manufacturing requirements.

Plain routing (that is, routing without design rules) is often
modeled as the Steiner tree packing problem [1], [4], [8], [9],
defined as follows: Let G = (V,E) be a positively weighted
simple graph. Let Ni∈{0...m−1} ⊆ V be m pairwise disjoint
non-empty subsets of G’s vertices, called the nets, where the
vertices of each net are called the terminals. A routing is a
forest of net routings Ei∈{0...m−1} ⊆ E, such that (V (Ei), Ei)
is a tree that spans all Ni’s terminals, where all the net routings
are pairwise vertex-disjoint and the optimization requirement
of minimizing the routing’s total weight is met. An example is
provided in Fig. 1. To solve plain routing, heuristic approaches,
relaxing the optimization requirement to some extent, are
commonly applied – see [1] for a survey.

In practice, routing must conform to design rules. For
example, the short rule [18] states that no edge may touch
two distinct net routings.

This paper extends the plain routing formulation to model
design-rule applications. We let the user provide a SAT or bit-
vector instance F along with a plain routing instance, where
F ’s Boolean variables include the edges. The router must

satisfy F , while guaranteeing that the satisfied edges comprise
a routing. We refer to the resulting problem as Routing Under
Constraints (RUC).

It is well-known that plain routing (in various flavors) can be
reduced to SAT [6], [19]. It has also been observed that design
rules can be reduced to SAT [16], [18]. The apparent advantage
of any SAT-based router to a heuristic router is that SAT can
handle arbitrary constraints (corresponding to applications of
arbitrary design rules) efficiently based on its sophisticated
conflict analysis. In addition, modeling a new design rule for a
heuristic router involves non-trivial modification of the router,
whereas in a SAT-based approach any design rule reducible to
SAT does not require modification of the router. Furthermore,
unlike any heuristic router, a SAT-based router is complete.

The main challenge for any SAT-based approach to routing
is scalability. As we shall see, a straightforward reduction of
RUC to SAT through bit-vector reasoning does not scale.

To overcome the scalability issue, we designed a RUC
solver, called DRouter. Essentially, DRouter implements
a router inside a SAT solver. It overrides the SAT solver’s
decision and restart strategies with routing-aware strategies
and enhances its learning with routing-aware conflict analysis.

The usefulness of applying a graph-aware decision strategy
and conflict analysis inside a SAT solver (in contrast to full re-
duction to bit-vector reasoning) was advocated and highlighted
in a recent work on solving the NP-hard problem of finding
a bounded-path (that is, a path whose weight falls within a
user-given range) in a graph [7]. In [7], the decision strategy
replaces the majority of the constraints; it guides the solver
towards the solution, while taking additional optimization
requirements into account. The decision strategy’s role in our
work is no less prominent.
Monosat [3] is a recent tool which can reason about

graph reachability and bit-vectors. The RUC problem can
be easily formulated in Monosat language. Let Pathfind-
ing under Constraints (PFUC) be a restriction of RUC to
one 2-terminal net. DRouter’s PFUC solving algorithm
is conceptually similar to that of Monosat. We shall see
that DRouter is substantially more efficient than Monosat
for the generic RUC problem. Sect. V provides a detailed
comparison between Monosat and DRouter.

We shall show that DRouter can route large clips of Intel
design while obeying up to millions of applications of the
design rules, whereas two industrial routers failed to do so.

In what follows, Sect. II contains preliminaries. Sect. III in-
troduces our PFUC solving algorithm, called DPF. DRouter,
introduced in Sect. IV, uses DPF as the underlying building

block. Sect.V compares DRouter to Monosat. Experimental
results are presented in Sect. VI. Sect. VII concludes our work.

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(a) Input

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(b) Solution

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(c) Conflict in
DRouter

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(d) Conflict in
Monosat

Fig. 1: Plain routing example on a 10× 10 solid grid graph, given
two nets of two terminals each N0 = {(0, 5), (9, 5)} and N1 =
{(5, 0), (5, 8)}. Assume the edges’ weights are 1.

II. PRELIMINARIES

A. Bit-vector Reasoning and SAT

A bit-vector (BV) solver decides formulas comprising fixed-
sized bit-vectors, Boolean variables and a variety of bit-
vector and Boolean operators. An eager BV solver works
by preprocessing the given BV formula, bit-blasting it to
Conjunctive Normal Form (CNF) and solving with a SAT
solver. We assume that the reader is familiar with the basics
of SAT and eager BV solving. See [10] for a recent overview.

B. Modeling of Routing Under Constraints (RUC)

Our basic RUC modeling extends the plain routing mod-
eling, presented in Sect. I. Let G = (V,E) be a graph,
Ni∈{0...m−1} =

{
ti0, t

i
1 . . . t

i
|Ni|−1

}
⊆ V be the pairwise

disjoint nets and F (E∪U) be a bit-vector formula (where U is
a set of bit-vector and Boolean variables). Given a model for
F , α, let Eα ⊆ E be a subset of edges assigned to 1 in α. The
problem of Routing Under Constraints (RUC) is about finding
a model α for F , such that any two terminals of the same net
Ni are connected in (V (Eα), Eα) and any two terminals of
two different nets are disconnected in (V (Eα), Eα).

Note that we leave out the requirement that the routing solu-
tion be a forest of trees and also the optimization requirement
as to the overall weight. Similarly to heuristic routers, our
algorithm will strive to heuristically reduce the overall weight
of the satisfied edges.

For convenience, we extend our modeling as follows.

First, we let F use the vertices V (along with the edges) as
Boolean variables. Given a RUC model α, an edge or vertex
b ∈ V ∪ E is active iff α(b) = 1.

Second, for every vertex v, we introduce a bit-vector vari-
able 0 ≤ nid(v) < m of width dlog2m− 1e to represent the
unique net id of active vertices, where the net id of net Ni is
the index i. For each vertex v, we encode the net boundary
constraint 0 ≤ nid(v) < m into F .

Third, we encode the following edge consistency constraints
into F : for each edge e = (v, u), e =⇒ v ∧ u ∧ (nid(v) =
nid(u)).

The short rule, mentioned in Sect. I, can now be encoded
as follows: for each (not necessarily active) edge e = (v, u),
v ∧ u =⇒ (nid(v) = nid(u))). Note that the short rule does
not hold for the synthetic example in Fig. 1b.

C. Routing Complexity
Routing is a difficult problem. Plain routing is NP-hard

even for one net [11] (in which case it is reduced to the
classical problem of finding a Steiner tree). For multiple nets,
plain routing is NP-complete even without the optimization
requirement [13]. RUC is NExpTime-hard, since BV logic
is trivially reducible to RUC, and BV logic is NExpTime-
hard [12] (although various subsets of BV logic that are
relevant in practice are NP-complete [5]).

D. Reducing RUC to Bit-Vector Reasoning
The following BV encoding for RUC can be applied if the

nets are restricted to two terminals only. Assuming the edge
consistency constraints are encoded (Sect. II-B), it remains
to ensure that for each net i, its pair of terminals ti0 and ti1
is connected. That can be done by encoding the following
cardinality constraint for each vertex: each terminal has one
active neighbor edge and each non-terminal vertex has two
active neighbor edges. One can extend the modeling to multi-
terminal nets by encoding the construction of directed trees
with a terminal sink for each net. We omit further details due
to space restrictions. As we shall see, BV encoding does not
scale well.

E. A* Algorithm
A* is a commonly used algorithm for finding a path in a

graph from a source vertex s to a target vertex t, given an
under-estimation, h(v), of the weight from any vertex v to
t. If h(v) = 0 for every v, A* operates identically to Di-
jkstra shortest-path algorithm. Having an accurate heuristical
estimation helps A* converge faster.

We are interested in graphs having a grid-like structure,
that is, graphs, whose vertices represent nodes of a two-
or three-dimensional grid. This is because routing in the
original physical design problem is carried out in a grid. One
example of a grid-like graph is a solid grid graph, whose
vertices correspond to the points of a two-dimensional grid and
whose edges connect any two vertices at distance one (see the
example in Fig. 1). Our algorithms apply Manhattan distance
as the A* heuristic in a grid-like setting and set h(v) = 0 for
each vertex v, otherwise.

We need a slightly modified version of A*.
First, the modified A* can receive an optional parameter:

a set of bad edges and vertices Bad, which cannot be used
for connecting s to t. The implementation of this feature is
straightforward: whenever A* visits an edge or vertex b ∈ Bad,
it abandons the exploration of the path containing b.

Second, the modified A* can receive another optional pa-
rameter: a set of edges, whose weight should be set to 0 for
that particular A* invocation.

Third, in cases where s is not connected to t in G, given
a set of bad edges and vertices A* returns a special value
⊥ and generates a conflict cut. Intuitively, a conflict cut is a
subset of the bad edges and vertices that prevented A* from
connecting s to t. An empty conflict cut would mean that s is
disconnected from t in G, independently of the bad set. Below,
we provide a more precise definition of the conflict cut.

1) Let Visited ⊆ V ∪ E be the set of vertices and edges
visited by A* during the graph traversal (that is, vertices
and edges connected to s, Bad included)

2) Let Unvisited ⊆ V ∪ E be the set of all vertices and
edges, unvisited by A*

3) Let the frontier Frontier ⊆ V ∪ E be a set, including:
a) All the vertices from Visited which have at least one

neighbor edge in Unvisited, and
b) All of the edges from Visited whose other vertex is in

Unvisited
4) The conflict cut is the set of vertices and edges that belong

to both Bad and Frontier.

III. PATHFINDING UNDER CONSTRAINTS

Let the Pathfinding under Constraints (PFUC) problem
be RUC, restricted to one 2-terminal net. We propose an
algorithm for solving PFUC, called DPF.

Given a graph G = (V,E), a single net N = {s, t} and
a BV formula F (E ∪ V ∪ U), DPF should return either a
model α for F , such that there exists a path from s to t
in (V (Eα), Eα), or UNSAT, if no such model exists. DPF
is designed to heuristically reduce the overall weight of the
satisfied edges.

For the rest of this section, we assume that the constraint
e =⇒ v∧u for each edge e = (v, u) is encoded into F . The
net boundary and edge consistency constraints from Sect.II-B
are unnecessary for pathfinding, since pathfinding involves a
single net.

A. DPF Algorithm

DPF is implemented inside an eager BV solver’s SAT solver.
It overrides the SAT solver’s decision strategy with an A*-
based algorithm and records additional conflict clauses when-
ever s becomes disconnected from t because of propagation
in F . DPF disables the SAT solver’s restart strategy.

During DPF’s invocation, an edge or vertex b can either
be: a) active–if b is assigned 1, b) inactive–if b is assigned
0, or c) unassigned.
DPF’s decision strategy tries to connect s to t by activating

edges (that is, assigning 1 to edges) in a queue σ, where σ

1: class PATHFINDER
2: members:
3: vertex s; . source vertex
4: vertex t; . target vertex
5: walk π = s ≡ π0π1 . . . π|π|−1 ≡ f ;
6: path σ = f ≡ σ0σ1 . . . σ|σ|−1 ≡ t;
7: methods:
8: INIT(vertex s′, vertex t′, BV Formula F) → Is

Conflict?
9: s := s′; t := t′

10: σ := A*(s,t)
11: if A* returned ⊥ then return ⊥ else return >

12: DECIDE() → SAT literal
13: if t ∈ π then . π connects s to t
14: if Unassigned edge e exists then return ¬e
15: return SAT-DECIDE()
16: return (σ0, σ1)

17: PROPAGATE() → Is Conflict?
Require: Invoked right after BCP if there was no conflict
18: while |σ| = 1 or (σ0, σ1) is active do
19: Pop σ0 from σ’s front; push it to π’s back
20: if σ is not violated then return >
21: σ := A*(π|π|,t,inactive vertices and edges,active

edges)
22: if A* returned ⊥ then
23: Add a clause comprising the conflict cut
24: return ⊥
25: while |σ| = 1 or (σ0, σ1) is active do
26: Pop σ0 from σ’s front; push it to π’s back
27: return >

28: BACKTRACK()
Require: Invoked after completing SAT solver’s backtracking
29: while π contains unassigned edges do
30: Pop the latest vertex from π’s back
31: σ := {} . Clear σ

Fig. 2: DPF Solver for Pathfinding under Constraints.

is initialized to the shortest path from s to t using A*. The
activated edges of σ are moved from the front of σ to the
back of the actual path stack π. Before each decision point,
the concatenation π ◦ σ comprises a walk from s to t in G,
where π’s edges are active and σ’s edges can be unassigned or
active. When the algorithm is finished, π contains a walk from
s to t. π might be a walk rather than a path for reasons which
will be discussed later. We suggest a simple post-processing
algorithm targeting cycle elimination in π in Sect. III-B.

We say that σ is violated when one of its vertices or edges
becomes inactive.

Consider the class implementing DPF in Fig. 2. The mem-
bers of the class (lines 3– 6) comprise s, t, π and σ. Consider
also the DPF invocation trace example in Fig. 3.

The method INIT (line 8) is invoked before the SAT solver
is launched. In INIT, DPF initializes s and t and then checks
whether there exists a path from s to t in G using A*. If no
such path exists, the problem is unsatisfiable. Otherwise, the
algorithm stores the path in σ. The modified SAT solver is then
invoked. Fig. 3a illustrates the situation after initialization for

our example.
The method DECIDE (line 12) overrides the SAT solver’s

decision heuristic. If the target is already reached (that is,
t ∈ π), DECIDE deactivates (that is, assigns 0) an unassigned
edge, if any, to minimize the overall active edge weight. If all
the edges are assigned, the algorithm invokes the default SAT
decision strategy. If the target is not reached, DECIDE simply
returns the first σ’s edge (σ0, σ1). The methods PROPAGATE
and BACKTRACK guarantee that (σ0, σ1) is unassigned when
DECIDE is invoked.

Consider the method PROPAGATE (line 17). It is invoked
right after the SAT solver’s BCP (Boolean Constraint Propa-
gation) if BCP did not encounter a conflict. Similarly to BCP,
PROPAGATE should return whether it found a conflict (> and
⊥, respectively, are returned for “no conflict” and “conflict”).

PROPAGATE starts by moving any active edges from σ’s
front to π’s back. Afterward PROPAGATE returns > if σ is
not violated. We call the situation when σ is violated path
violation. A path violation occurs in Fig. 3b of our example.

In case of path violation, we run A* so as to create a new σ
to continue the path π towards t using active and unassigned
edges only. We also set the weight of active edges to 0 for
A*, in order not to “pay” for a single edge more than once
in case A* reuses already assigned edges. This can happen,
for example, if there is no path from π|π|−1 to t anymore as
is the case in Fig. 3b. This also explains why π might be a
walk, rather than a path.

If A* was successful in finding a new σ, PROPAGATE moves
any active edges from σ’s front to π’s back and returns. This
is the case in our example. Fig.3c illustrates the situation just
after PROPAGATE’s completion.

Assume now that A* could not find a new path. This is
the case in Fig. 3d continuing our example. In this case the
algorithm adds the conflict cut as a conflict clause and returns
⊥. The conflict cut is a subset of the inactive vertices and
edges that blocks any path from s to t. In our example, the
conflict cut comprises the following set {(2, 0), (3, 1)}. The
conflict cut, seen as a clause, must always be falsified by the
current partial assignment, since all its members are inactive.
Hence recording it as a conflict clause triggers SAT solver’s
conflict analysis.

During conflict analysis, the solver will learn the 1UIP
conflict clause and backtrack, so as to have one and only
one asserting literal of the conflict clause unassigned. The
method BACKTRACK (line 28) is invoked whenever SAT
solver’s backtracking is completed. The method aligns π with
the current partial assignment (by popping all the unassigned
edges from π) and clears σ. After backtracking, the solver
flips the asserting literal and applies BCP, followed by a
PROPAGATE invocation. Note that σ is populated again by
PROPAGATE.

In our example, the learned 1UIP conflict clause is ¬(2, 0)∨
¬(3, 2) (we omit derivation details due to space constraints).
The situation after backtracking, propagating and finding a
new σ in our example is shown in Fig. 3e. The vertex (3, 2)
is rendered inactive because of BCP in the new clause.

This completes the description of our PFUC algorithm.
Fig. 3f shows a completed routing for our example.

As we mentioned, after completing the routing, the solver
deactivates any unassigned edges to reduce the weight and
then falls back to the default decision heuristic.

Note that even after the initial routing has been completed,
the solver might still backtrack and change the routing. In
our example in Fig. 3, replacing the clause ¬(3, 2) ∨ ¬(3, 1)
by an equivalent set of clauses ¬(3, 2) ∨ ¬(3, 1) ∨ x ∨ y,
¬(3, 2) ∨ ¬(3, 1) ∨ ¬x ∨ y, ¬(3, 2) ∨ ¬(3, 1) ∨ x ∨ ¬y,
¬(3, 2)∨¬(3, 1)∨¬x∨¬y, where x, y are auxiliary variables,
would cause the solver to generate a “bad” routing through
the vertices (3, 2) and (3, 1) which it would only fix later
following conflict analysis and backtracking.

B. Optimization with the Decision Strategy

As we have seen, DPF applies the following two techniques
as part of its decision heuristic to heuristically reduce the
routing weight: a) using the shortest path A* algorithm,
and b) deactivating any unassigned edges after the routing is
completed.

In addition, one can apply the following post-processing
algorithm to eliminate cycles in π (if any) to reduce the
total edge weight. The algorithm below reuses the SAT solver
instance created by DPF. The instance is updated and invoked
incrementally. First, assuming DPF returned a model α, iden-
tify a simple tree in (Eα, V (Eα)) and provide its edges as unit
clauses to the SAT solver. Second, run a plain SAT solver with
the following single modification to the decision heuristic:
deactive unassigned edges first.

0 1 2 3
0
1
2

(a) After init.

0 1 2 3
0
1
2

X
X

(b) σ is violated

0 1 2 3
0
1
2

X
X

(c) New σ found

0 1 2 3
0
1
2

X
X

X

(d) A conflict

0 1 2 3
0
1
2

X
X

X

(e) Conflict resolved

0 1 2 3
0
1
2

X
X

X

(f) Routing done

Fig. 3: DPF trace example. Assume that s = (0, 0) and t = (3, 0)
and that the following CNF is provided: ¬(1, 0)∨¬(2, 0), ¬(1, 0)∨
¬(1, 1), ¬(3, 2)∨¬(3, 1). Dotted edges correspond to σ, while bold
edges correspond to π. “X” marks inactive vertices.

IV. ROUTING UNDER CONSTRAINTS

This section introduces DRouter – our RUC solution.
Similarly to DPF, DRouter is implemented inside a SAT
solver. Sect. IV-A below adjusts DPF to routing. Our basic
DRouter algorithm is presented in Sect. IV-B. Sect. IV-C,
Sect. IV-D and Sect. IV-E introduce three enhancements to
the basic algorithm which are crucial for scalability.

A. Routing-Aware Pathfinding

We need to make simple yet essential modifications to DPF
to make it routing-aware. Our goal is to be able to apply DPF
inside DRouter to connect terminals within a net.

First, net boundary and edge consistency constraints must
be applied (recall Sect. II-B).

Second, the class PATHFINDER should have an additional
member nid, representing the net id of the routed net, which
will be initialized during INIT to a new (third) parameter.

Third, DECIDE will not be invoked after s is connected to t;
hence the code in Fig. 3 between lines 13– 15 can be ignored.

Fourth, a crucial modification should be applied to
PROPAGATE when a path violation is identified (line 21).
When this happens, A* is invoked to find a new path to t.
We disallow A* from using the vertices of any net other than
the current net (in addition to the disallowed inactive vertices
and edges). After this change, line 21 looks as follows:
σ := A*(π|π|,t,inactive vertices and edges ∪ any active
vertex v, such that nid(v) 6= nid, active edges)
Furthermore, the conflict clause, created at line 23, will

contain additional literals as follows: any vertex v of net id
nid(v) 6= nid will contribute to the conflict clause one bit on
which the values of nid(v) and nid differ.

For example, assume that the modified DPF is invoked to
connect the two terminals of N1 after N0 is routed as shown
in Fig. 1c. A* will fail, since all the possible paths are blocked
by N0. The conflict clause will contain the only bit of nid(v)
for every vertex v of row 5.

B. The Basic Algorithm

We can now present the basic algorithm of DRouter.
A class implementing the algorithm for 2-terminal nets is

depicted in Fig. 4 (an extension for multi-terminal nets is
proposed later in this section). The class maintains an array
of net ids nids, the current index to nids, and an array of the
class PATHFINDER. We assume that PATHFINDER is modified
to be routing-aware as explained in Sect. IV-A.

The idea is simply to route the nets one by one using a fresh
pathfinder (that is, a fresh instance of the class PATHFINDER)
for each net.

The method INIT initializes nids and then initializes a
pathfinder for net id 0.

The method DECIDE simply applies the DECIDE method of
the currently routed net, if such exists. If all the nets are routed,
DECIDE deactivates unassigned edges, if any, and, otherwise,
lets the SAT solver take the decision.

PROPAGATE operates in a loop as long as non-routed nets
exist. Within the loop, it tries to propagate in the currently
routed net, which might result in a conflict, in which case
PROPAGATE returns ⊥. Otherwise, if the net is not yet routed,
the method returns >. If the net is routed, PROPAGATE
initializes a pathfinder for the next net, if any, pushes it to
the pathfinders vector and continues the main loop.

BACKTRACK backtracks over any fully routed nets, and then
it backtracks within the currently routed net (if one exists).

Our algorithm can easily be extended to treat any multi-
terminal net by connecting routing previously created for that
net to any new terminal until the net is fully routed. A*
can be applied, without modifications, for connecting multiple
sources to a single target.

1: class DRouter
2: members:
3: number[] nids;
4: number currNidInd;
5: PATHFINDER[] pfs;

6: methods:
7: INIT() → Is Conflict?

Require: SAT solving has not yet started
8: nids := {0, 1, . . . ,m− 1}
9: PATHFINDER p;

10: if P.INIT(t01,t02,0) == ⊥ then return ⊥
11: Push p to the back of pfs
12: currNidInd := 0;
13: return >

14: DECIDE() → SAT literal
15: if currNidInd ≤ m then
16: p := back of pfs
17: return P.DECIDE()
18: if Unassigned edge e exists then return ¬e
19: return SAT-DECIDE()

20: PROPAGATE() → Is Conflict?
Require: Invoked right after BCP if there was no conflict
21: while currNidInd < m do
22: p := back of pfs
23: if P.PROPAGATE() == ⊥ then return ⊥
24: if p.t /∈ p.π then return >
25: currNidInd := currNidInd + 1
26: if currNidInd == m then return >
27: PATHFINDER p;
28: n := nids [currNidInd]
29: if P.INIT(tn1 ,tn2 ,n) == ⊥ then return ⊥
30: Push p to the back of pfs

31: BACKTRACK()
Require: Invoked after completing SAT solver’s backtracking
32: while currNidInd ≥ 0 do
33: p := back of pfs
34: P.BACKTRACK()
35: if |p.π| > 1 then return
36: Pop from pfs’s back
37: currNidInd := currNidInd − 1

Fig. 4: Basic DRouter for 2-terminal nets.

One can also apply a post-processing algorithm for cycle
elimination to reduce the overall solution weight, similarly to
Sect. III-B

C. Early Net Conflict Detection

Let net conflict be a situation during DRouter invocation
when a certain conflicting net Ni cannot be routed anymore,
since there exists no path in the graph between two of its
terminals tiq and tiw (q 6= w).

Our algorithm might encounter a net conflict when A* is

applied to route a new terminal of the conflicting net. A net
Nj blocks the conflicting net, if any vertex v, which belongs
to Nj (that is, a vertex v, such that nid(v) = j), is part of the
conflict cut.

A net conflict situation appears in Fig. 1c, where net N0

blocks the conflicting net N1.
Our basic algorithm identifies net conflicts only when it gets

to routing the conflicting net, but it is desirable to discover
and handle such situations earlier. By “handling” we mean
recording a clause, which will cause the solver to backtrack
and re-route.

We propose the following early net conflict detection algo-
rithm. After any net is routed, we check, for every unrouted
net, if it can still be routed by applying A* for connecting
terminal i to terminal 0, for every i > 0. If a conflicting net is
discovered, we record a conflict clause comprising the conflict
cut found by A*.

To speed things up, one can keep, for each net and each
terminal i > 0, a pre-routed path β to terminal 0 of that net,
and check if β is still not violated before invoking A*. If A*
has to be invoked and it finds a path, β can be updated to that
path.

D. Net Swapping

Net ordering is crucial for our algorithm. Consider the
example in Fig. 1a. If DRouter picks N1 as the first net,
the solution in Fig. 1b will instantly be found without any
net conflicts. Picking N0 as the first net would result in a
net conflict, shown in Fig. 1c. The algorithm described so far
would have to record conflict clauses to disqualify a variety of
paths connecting N0’s terminals until it discovers a path which
does not block N1. Such an approach might cause run-time
and/or memory explosion issues in practice.

We propose two solutions for this problem. The first is
net swapping, presented next. The second is net restarting,
presented in Sect. IV-E.

Net swapping is applied after a net conflict is discovered and
the corresponding conflict clause recorded. Assume Ni is the
contradicting net. It might be blocked by several previously
routed nets. Let Nj be the net routed last out of all nets
blocking Ni. In that case, the nids array, which defines routing
order, should appear as follows: {A, j,B, i, C} (where A, B,
and C each represent a sequence of net ids). Net swapping
backtracks to the decision level just before the algorithm
started routing Nj and swaps between the nets Nj and Ni. In
addition, it moves Ni to immediately follow Nj . nids will look
as follows after net swapping: {A, i, j, B,C}. Hence, after net
swapping, the algorithm will attempt to route Ni, followed by
Nj .

Net swapping solves the problem in Fig. 1a even if N0 is
picked as the first net simply by swapping the nets after the
first net conflict.

Net swapping might not be sufficient for finding a routable
net ordering, because it is restricted to two nets only. For
example, a problem might occur if the two nets block each
other, regardless of the order, because of previously routed

nets. In such a case, the algorithm will keep swapping the two
nets. The algorithm would still complete because of conflict
clause recording, but it might be inefficient. Net restarting,
presented next, is another, more global, algorithm for changing
the net ordering, based on information derived during net
conflict analysis.

E. Net Restarting

Net restarting is the following simple yet effective technique
for net conflict-aware net reordering.

We associate a conflict counter with each net which is
increased whenever the net becomes conflicting in a net
conflict. Once the counter reaches a user-given threshold T
(10 by default) for some Ni, DRouter restarts and places i
before all the other nets in nids, so as to start routing Ni right
after the restart. The conflict counters for all nets are set to 0
following a net restart.

Assume that N0 is the first net in our example in Fig. 1a.
Applying net restarting alone (without net swapping) will
solve the problem after T net conflicts by restarting, placing
N1 before N0, and routing.

Sect. VI will demonstrate that combining net swapping and
net restarting yields the best results in practice.

V. COMPARING DRouter TO Monosat

Monosat [3] is a recent solver that can reason about a BV
formula F and various graph predicates, given one or more
graphs sharing edges with F . In particular, Monosat can rea-
son about graph reachability predicates, where a reachability
predicate reach(v,u) holds iff vertex v is connected to vertex
u through active edges (that is, edges assigned 1).

The RUC problem can easily be modeled in Monosat as
follows. First, the BV formula F and the graph G are pro-
vided as input to Monosat. Second, a reachability predicate
reach(tk0 ,tki) is created and globally asserted for each terminal
tki for i > 0 for each net Nk. That guarantees that each net
Nk is routed. Third, a reachability predicate reach(tk0 ,tl0) is
created and its negation ¬reach(tk0 ,tl0) is globally asserted for
each pair of the first terminals tk0 and tl0 for each pair of nets
Nk and Nl for k < l. That guarantees that all the nets are
routed disjointly.
Monosat takes advantage of dedicated conflict analysis

techniques for reasoning about reachability predicates. It ap-
plies the Ramalingam-Reps incremental shortest path algo-
rithm [15] to keep track of the status of reachability predi-
cates. Whenever an asserted predicate reach(v,u) is violated,
that is, whenever v and u are no longer connected through
active edges, Monosat creates a conflict clause comprising
the conflict cut, similarly to our DPF algorithm. Whenever
an asserted negated predicate ¬(reach(v,u)) is violated, that
is, whenever v and u become connected through active edges,
Monosat records a conflict clause comprising the shortest
path connecting v to u through active edges.
Monosat can also be configured to apply a dedicated

decision heuristic for globally asserted reachablity predicates.1

Monosat’s decision heuristic connects the vertex v to u, for
each asserted predicate reach(v,u) in the user-given order, by
shortest path, using the Ramalingam-Reps algorithm, similarly
to our DPF algorithm, the difference being that DPF uses
the cheaper A* algorithm lazily, whereas Monosat uses the
incremental Ramalingam-Reps eagerly.

Let us compare the functionality of DRouter without
net swapping and net restarting to that of Monosat with
the decision heuristic on the very simple routing instance in
Fig. 1a.

Assume that N0 is routed first. Both Monosat and
DRouter will easily route N0. The key difference is that
DRouter will identify a net conflict immediately after N0

is routed, since N0 blocks N1 (see Fig. 1c), while Monosat
will start routing N1 and discover a conflict only when the nets
become connected, as shown in Fig. 1d. Then Monosat will
learn a clause consisting of all the active edges in the bottom-
left sub-grid (0, 0)− (5, 5) in Fig. 1d. Monosat will have to
create an exponential number of clauses to falsify any single
N0 routing blocking N1 (including that shown in Fig. 1c),
whereas DRouter falsifies any single N0 routing at once.

Assume now that N1 is routed first. DRouter solves such a
problem instantly without any conflicts. Monosat might still
encounter an exponential number of conflicts before finding a
solution, since after routing N1 it will keep trying to route N0

using its shortest path heuristic right through N1 routing.
For these reasons, DRouter, even without the advanced

techniques of net swapping and net restarting, is expected to
be considerably more efficient than Monosat for the RUC
problem. Net swapping and net restarting make DRouter
substantially more efficient.

All in all, unlike DRouter, Monosat is not routing-aware,
although it is reachability-aware. In addition, Monosat is
less optimization-aware than DRouter as Monosat neither
tries to deactivate unassigned edges nor has a post-processing
optimization loop (recall Sect. III-B).

VI. EXPERIMENTAL RESULTS

In this section, we describe various experiments on crafted
and industrial instances. For all the experiments, the run-time
is measured in seconds, the memory is measured in Gb, and
“TO” stands for time-out.

A. Crafted Instances

This section presents experiments with crafted instances.
Detailed results and all the benchmarks are publicly avail-
able at [14]. We used Intelr Xeonr CPU E3-1270 v3
machines with 32Gb of memory and 3.50GHz frequency. We
set the time-out to 20 min. The following RUC solvers were
used: a) DR: shortcut for DRouter, b) DR-S: DRouter

1The decision heuristic is not mentioned at all in the conference paper [3]
and is only briefly mentioned in the paper’s extended version [2]. We
are grateful to the first author of [3] for sharing the details in private
communication.

Size First Net DR DR-S DR-SR DR-R BV Mn Mn+D
10 N0 0 0 0 0 0 55 TO
1000 N0 25 31 TO 26 TO TO TO
10 N1 0 0 0 0 0 222 TO
1000 N1 25 25 25 25 TO TO TO

TABLE I: Run-time comparison on several crafted instances.

without net swapping, c) DR-R: DRouter without net restart-
ing, d) DR-SR: DRouter with neither net swapping nor
net restarting, e) Mn: shortcut for default Monosat (ver-
sion 1.2.0), f) Mn+D: Monosat with the decision heuristic
for reachability (-decide-theories switch is applied), g) BV:
Sect. II-D’s reduction of RUC to BV and application of Intel’s
eager BV solver Hazel.

1) Basic Comparison: The goal of our first experiment is to
confirm the conclusion of Sect. V that DRouter should scale
much better than Monosat for RUC even on very simple
instances without any constraints. To that end, we created two
benchmarks comprising the RUC instance in Fig. 1 for the
two different possible initial net orderings. We also created
two instances for two net orderings for a larger benchmark,
structurally similar to that in Fig. 1, comprising a 1000×1000
grid with two nets: N0 = {(0, 500), (999, 500)} and N1 =
{(500, 0), (500, 998)}. The results appear in Table I (“First
Net” stands for the first net in the net ordering).
Monosat with the decision heuristic (Mn+D) cannot solve

a single instance, whereas DRouter with either net swapping
or net restarting (or both) enabled instantly solves both 10×10
instances and easily solves both 1000 × 1000 instances. This
result confirms our analysis in Sect. V.

Interestingly, DRouter without net swapping and net
restarting (DR-SR) can easily solve the 10 × 10 instances,
but can solve the 1000 × 1000 benchmark only when N0 is
routed first, that is, when there are no net conflicts. This is
because when N1 is routed first, there are too many conflict
clauses to record for DR-SR.

Default Monosat can solve the 10× 10 benchmark, but it
is substantially slower than the other solvers. Hence, it comes
as no surprise that default Monosat cannot solve the 1000×
1000 benchmark.

2) Extended Comparison: We now present experimental re-
sults on RUC benchmarks crafted as follows (where N = 20):

1: for all M ∈ {3, 5, 7} do
2: for all C ∈ {0, 10, 20, 30} do
3: Generate a solid grid graph having N ∗M rows

and columns
4: Create N 2-terminal nets, with randomly picked

terminals
5: Let V = (N ∗ M)2 be the number of vertices.

Generate C/100 ∗ V binary clauses as follows. Pick a
random vertex v = (x, y) and another random vertex u
sharing either x or y coordinate with V . Add the clause
¬v ∨ ¬u.

Note that M regulates the grid size and C regulates the
number of generated clauses. We created 10 instances for each
M × C combination.

Consider Table II. DRouter is the only solver able to
solve all the instances. Monosat in either mode, BV, and

M C DR DR-S DR-SR DR-R BV Mn Mn+D
3 0 10 10 0 0 0 0 0
3 10 10 0 0 10 0 0 0
3 20 10 0 0 0 0 0 0
3 30 10 0 0 0 0 0 0
5 0 10 10 0 0 0 0 0
5 10 10 10 0 0 0 0 0
5 20 10 10 0 0 0 0 0
5 30 10 10 0 10 0 0 0
7 0 10 10 0 0 0 0 0
7 10 10 0 0 0 0 0 0
7 20 10 0 0 0 0 0 0
7 30 10 0 0 0 0 0 0

TABLE II: Comparison of the number of solved crafted instances.

Area in µm2 Nets Vertices Constraints Time Memory
24 110 42,456 484,008 25 0.7
24 230 42,456 484,008 391 1
32 352 63,740 667,764 705 2.2
129 788 127,480 2,669,056 14,733 6.5
129 891 127,480 2,669,056 92,950 6.5

TABLE III: DRouter performance on industrial instances. “Con-
straints” represent the number of design rule applications.

DR-SR cannot solve a single instance. Some instances are
solved solely with net swapping and some others are solved
solely with net restarting, but only their combination renders
DRouter scalable.

B. Industrial Instances

This section shows that DRouter can scale to large clips
from Intel designs which could not be routed by two modern
industrial routers without violating design rules.

Consider Table III. We used Intelr Xeonr CPU E7-4870
machines with 2.40GHz frequency and 528Gb of memory.
DRouter solves large industrial instances having hundreds
of nets and up to millions of design rule applications, where
the number of vertices reaches into the hundreds of thousands.

Two industrial routers we tested failed to route these clips.
First, a typical heuristic router was only able to find routings
that violated some of the rules. Second, an incomplete router
based on enumerating some of the potential solutions and then
picking an actual solution out of the potential ones using a SAT
solver [16], failed to route these clips due to memory-outs
(despite the machines’ having as much as 528Gb of memory).

These results demonstrate that DRouter gives clear added
value in industrial settings.

VII. CONCLUSION

This paper proposed a formal model for the problem of
design-rule-aware routing. Our model combines graph theory
(for representing the routing problem) and bit-vector logic (for
representing applications of the design rules). We introduced
a solver for the resulting problem, called DRouter. Essen-
tially, DRouter implements an A*-based router inside a SAT
solver, overriding the solver’s decision and restart strategies
and enhancing its learning with routing-aware algorithms. We
demonstrated that DRouter has substantially better capacity
than either plain reduction to bit-vector reasoning or the
Monosat solver. Furthermore, we showed that DRouter
can route large clips from Intel designs while obeying up
to millions of design rule applications–a task two industrial
routers failed to accomplish.

VIII. ACKNOWLEDGMENTS

We are grateful to Kostas Malinauskas for carrying out
the experiments, presented in Sect. VI-B. We thank Suto
Gyuszi, Nina Lane and Kostas Malinauskas for many useful
discussions. We are grateful to Sam Bayless for his essential
help with Monosat and to Paul Inbar for editing the paper.

REFERENCES

[1] N. Abboud, M. Grötschel, and T. Koch. Mathematical methods for
physical layout of printed circuit boards: an overview. OR Spectrum,
30(3):453–468, 2008.

[2] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu. SAT modulo
monotonic theories. CoRR, abs/1406.0043, 2014.

[3] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu. SAT modulo
monotonic theories. In B. Bonet and S. Koenig, editors, Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA., pages 3702–3709. AAAI Press, 2015.

[4] S. Chopra. Comparison of formulations and a heuristic for packing
steiner trees in a graph. Annals of Operations Research, 50(1):143–171,
1994.

[5] N. Dershowitz and A. Nadel. Is bit-vector reasoning as hard as nexptime
in practice? In 13th International Workshop on Satisfiability Modulo
Theories, 2015.

[6] S. Devadas. Optimal layout via boolean satisfiability. In 1989 IEEE
International Conference on Computer-Aided Design, ICCAD 1989,
Santa Clara, CA, USA, November 5-9, 1989. Digest of Technical Papers,
pages 294–297. IEEE, 1989.

[7] A. Erez and A. Nadel. Finding bounded path in graph using SMT for
automatic clock routing. In D. Kroening and C. S. Pasareanu, editors,
Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, volume
9207 of Lecture Notes in Computer Science, pages 20–36. Springer,
2015.

[8] P. J. Esrom. Combinatorial algorithms for integrated circuit layout.
Robotica, 9(1):118, 1991.

[9] M. Grötschel, A. Martin, and R. Weismantel. The steiner tree packing
problem in VLSI design. Math. Program., 77:265–281, 1997.

[10] L. Hadarean. An Efficient and Trustworthy Theory Solver for Bit-vectors
in Satisfiability Modulo Theories. Dissertation, New York University,
2015.

[11] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Proceedings of a symposium on the
Complexity of Computer Computations, held March 20-22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York.,
The IBM Research Symposia Series, pages 85–103. Plenum Press, New
York, 1972.

[12] G. Kovásznai, A. Fröhlich, and A. Biere. On the complexity of fixed-
size bit-vector logics with binary encoded bit-width. In P. Fontaine and
A. Goel, editors, 10th International Workshop on Satisfiability Modulo
Theories, SMT 2012, Manchester, UK, June 30 - July 1, 2012, volume 20
of EPiC Series, pages 44–56. EasyChair, 2012.

[13] M. Kramer and J. van Leeuwen. The complexity of wire-routing and
finding minimum area layouts for arbitrary VLSI circuits. Advances in
computing research, 2:129–146, 1984.

[14] A. Nadel. Routing under constraints: Benchmarks and detailed results.
https://goo.gl/OUXido.

[15] G. Ramalingam and T. W. Reps. An incremental algorithm for a
generalization of the shortest-path problem. J. Algorithms, 21(2):267–
305, 1996.

[16] N. Ryzhenko and S. Burns. Standard cell routing via boolean satisfia-
bility. In P. Groeneveld, D. Sciuto, and S. Hassoun, editors, The 49th
Annual Design Automation Conference 2012, DAC ’12, San Francisco,
CA, USA, June 3-7, 2012, pages 603–612. ACM, 2012.

[17] N. A. Sherwani. Algorithms for VLSI physical design automation.
Kluwer, 3 edition, November 1998.

[18] B. Taylor and L. T. Pileggi. Exact combinatorial optimization methods
for physical design of regular logic bricks. In Proceedings of the 44th
Design Automation Conference, DAC 2007, San Diego, CA, USA, June
4-8, 2007, pages 344–349. IEEE, 2007.

[19] R. G. Wood and R. A. Rutenbar. FPGA routing and routability
estimation via boolean satisfiability. IEEE Trans. VLSI Syst., 6(2):222–
231, 1998.

https://goo.gl/OUXido

	Introduction
	Preliminaries
	Bit-vector Reasoning and SAT
	Modeling of Routing Under Constraints (RUC)
	Routing Complexity
	Reducing RUC to Bit-Vector Reasoning
	A* Algorithm

	Pathfinding under Constraints
	DPF Algorithm
	Optimization with the Decision Strategy

	Routing Under Constraints
	Routing-Aware Pathfinding
	The Basic Algorithm
	Early Net Conflict Detection
	Net Swapping
	Net Restarting

	Comparing DRouter to Monosat
	Experimental Results
	Crafted Instances
	Basic Comparison
	Extended Comparison

	Industrial Instances

	Conclusion
	Acknowledgments
	References

